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FOREWORD 
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PREFACE 

Acoustic fatigue failure in aerospace structures has been a concern for many years. 
New prediction techniques are needed for the new materials and structural concepts of 
interest and higher sound pressure levels encountered. The objective of this work is to 
improve the understanding of the nonlinear behavior of beams and plates excited from low 
to high levels of excitation and to develop multimodal fatigue models for aircraft structures. 
Tests were conducted utilizing a clamped beam statistically tested and shaker driven at 
increasing levels of excitation. Experiments were also conducted utilizing clamped plates 
excited by a vibration shaker and an acoustic progressive wave tube. Two types of 
materials were selected for the experiments, an aluminum alloy and a carbon fibre 
reinforced plastic. The total strains and the components, bending and axial and the 
displacements were measured with increasing levels of excitation. Bistable behaviour was 
observed with sinusoidal excitation for both the beams and plates. The measured axial or 
in-plane strains were very low compared to the bending strains. However, the axial strain 
lowered the bending strains from that predicted with linear bending theory. The randomly 
excited beams exhibited a slight frequency shift and peak broadening, which can be 
attributed to an increased stiffening or hard spring geometric nonlinearity. The randomly 
excited plates exhibited a greater frequency shift and peak broadening than the beams. 
The dynamic tests resulted in a nonlinear relationship between the response strains and 
displacements. The implications of nonlinear behaviour of beams and plates relative to 
fatigue lives has been studied. The Miles single mode model has been modified to account 
for the multimodal strain response of clamped straight beams and flat plates. Trends in the 
strain peak probability densities at low level and high levels of excitation were analyzed to 
determine the effects of axial strain on their shape. An effective multimodal cyclic frequency 
model has been developed. A method for incorporating the effects of multimodal response 
of simple structures is presented, together with their fatigue life estimates. The fatigue 
model developed gave reasonable estimates of the fatigue life of structures with multimodal 
response. 
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CHAPTER I 

I      INTRODUCTION 

Acoustic fatigue problems with military aircraft structures have continued to be expensive to 

solve. Results of modifications to older aircraft, changes in their usage to accommodate new 

weapons and equipment, extended usage and lifetimes have all had a significant cost impact 

Increased performance capabilities also result in increased acoustic levels. Aircraft designs 

resulting in direct exhaust gas impingement on structural components have caused increased 

levels of excitation and high thermal loads. Row separation and oscillating shock waves cause 

very high fluctuating pressure on the structures. Exposure of aircraft structures and equipment to 

these increasingly higher noise levels warrants the development of new prediction methods. 

Methods have been developed over the years to predict and reduce acoustic fatigue, but they have 

not kept pace with increasing requirements. In addition, future structural configurations with new 

materials and much higher stiffness-to-weight ratios are evolving. A better understanding of the 

nonlinear random vibrational response of structures is needed to improve the prediction of 

acoustic fatigue damage. The first part of this chapter contains a literature review. The second 

part contains the objectives and an outline of the study. 

1.1       LITERATURE REVIEW 

Acoustic fatigue life prediction methods generally include predicting the random acoustic 

loads, estimating the vibrational stress response of the structure and predicting the life from stress 

versus cycles to failure curves for the material and fastener configuration. As the acoustic load 

increases, the stress response becomes more nonlinear and more difficult to predict Even in this 

regime the terminology mode shape is often used to describe the dynamic deflection shape in the 

neighbourhood of a resonant frequency. Strictly speaking, this is not the mode shape as there are 

small off-resonant contributions from other modes when measurements are made by the peak 

amplitude method. This terminology is commonly used throughout the published literature. 

1 The terminology acoustic fatigue is often found in the literature from the UK. The terminology sonic 
fatigue is often found in the literature from the USA. Both terms are used in this work to mean the same 
thing. 
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Modal analysis theory is generally based upon linear assumptions where mode shapes are 

amplitude independent and occur at a single frequency. In the nonlinear case, the displacement 

shapes and natural frequencies are dependent upon the boundary conditions, the level of the 

excitation force and the initial conditions. The terminology linear mode shape is used in this 

study to distinguish between the displacements measured at low levels of excitation and those 

obtained at high levels of excitation where the axial strains are formidable. In the latter case, the 

terms nonlinear displacernem shape or displacement shape are used throughout this study. 

1.1.1    REVIEW OF DESIGN GUIDES 

Clarkson [1] recently reviewed the sonic fatigue technology evaluating the results of 170 

publications on the subject. He discusses various design guides for predicting the acoustic 

fatigue life of metallic and composite plate-type structures. These are based on simplified 

theory and test data formulated into semi-empirical mathematical expressions.  The 

predictions are based upon assuming the fundamental mode as the controlling parameter 

which accounts for most of the damage. Miner's [2] law and cumulative damage theory and 

a range of experimental results were utilized to predict the fatigue life. Single panel tests 

were conducted by Hess et al [3] in 1959. Lacking theoretical methods to predict acoustic 

fatigue lifetimes accurately, more testing of actual aircraft structures and standardized test 

structures evolved. These studies eventually evolved into simplified design guides in the 

form of nomographs by Belcher et al [4] in 1959, McGowan [5] in 1963, Ballentine et al [6] 

in 1968 and Rudder and Plumblee [7] in 1974. The successive developments extended into a 

wider range of structures both metallic and composite at room temperature and elevated 

temperatures. Early work at elevated temperatures is reported by Schneider and Rudder [8] 

in 1973. Design guides in the form of separate data sheets were published by Thomson and 

Lambert [9] in 1972 from data and information obtained by the Group on Acoustic Fatigue of 

the AGARD Structures and Materials Panel The Engineering Science Data Unit [10] took 

over the early work produced by AGARD and continues updating these design guides 

periodically. A design guide for graphite epoxy structures was developed by Holehouse 
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[11] in 1984. The design guides are all based upon the simplifying single mode assumption 

that considers the fundamental panel mode as the only source of damage. 

Multimodal effects were considered theoretically as early as 1958 by Powell [12], but it was 

not practical to pursue at that time. The S-N fatigue curves in references [7] and [9] are 

limited to narrow band random excitation around the fundamental resonance, thereby 

excluding higher frequency resonances. The experimental studies of van der Heyde and Kolb 

[13] used acoustic excitation of panels in the 50-800 Hz range. This included more than the 

fundamental resonance. Their comparisons of the multimodal response with the uni-modal 

prediction methods of references [7] and [9] show agreement in predicting fatigue life 

between 0.4 to 2.0. The experimental studies of Wolfe and Holehouse [14] of adhesively 

bonded aluminium and graphite epoxy panels and shaker beam coupons show a difference 

between single mode shaker coupon fatigue data and multimode panel data. In the case of the 

graphite epoxy experiments, the rms stress responses of the coupons were a factor of 2 or 

more greater than that of the panel data for the same time to failure. Mei and Paul [15] 

investigate the multimodal response of clamped rectangular plates to acoustic loading. This 

work eventually was incorporated into MSC/NASTRAN, a finite element program [16]. A 

comparison is made between the multimodal response of composite and aluminium alloy 

plates to random acoustic loads by White [17]. This shows the importance of the multimodal 

response of several peaks as the excitation level increases. The frequencies of the peaks 

increase and the peaks become much wider as the overall level increases. The paper 

introduces a new method of showing the contribution of each response frequency by 

integrating across the normalised strain spectral density. 

Many tests were confined to simple beams and plates to concentrate on gaining a 

fundamental understanding of the behaviour of carbon fibre reinforced plastics2 by White and 

his co-workers [18]. White and Mousley [19] compare overall plate response levels to 

predictions made using the uni-modal response method described by Clarkson [1 p 17]. As 

2 The terminology carbon fibre reinforced plastic is often found in the literature from the UK. The 
terminolgoy graphite epoxy is often found in the literature from the USA. Both terms are used in this work to 
mean the same thing. 



CHAF-TIR I 

the in-plane conipressive loads increase, plates approach the buckling condition and 'snap- 

through' occurs as shown by Ng and White [20]. The coupon tests used successfully to 

develop basic S-N data from metal structures are not as reliable for composites. The edge 

peeling problem makes it difficult to reproduce the type of failure that takes place in 

practical structures. Usually delamination failure occurs in practical structures. To 

overcome this problem, White [21] developed extra wide coupons using a half sine wave 

clamp for the cantilevered plate to yield representative delamination failures within the plate. 

Further investigations using this method were reported in Drew and White [22]. 

Acoustic load predictions are an essential ingredient to predict acoustic fatigue life. 

Clarkson [1 p33-35] reviewed the literature on the many aircraft sources of noise.   Sources 

include jet noise, turbulent boundary layer noise, separated flow, oscillating shocks and 

cavity oscillations. Unger et al [23] developed a guide for estimating aeroacoustic loads. 

More recently, Hubbard (editor) [24] developed an aeroacoustic guide including theory and 

practice.  Coe and Chyu [25] showed the large differences in the spectra from attached 

boundary layer noise, intermittent shock, separated flow and shock. More recently, 

Laganelli and Wolfe [26] discussed prediction methods for fluctuating pressures in attached 

and separated flows. The load predictions should include the overall sound pressure levels, 

the frequency spectra and the spatial correlation. These are important in the design of test 

facilities to simulate the acoustic loads' of the aircraft. The acoustic properties of the test 

facilities can considerably affect the response of the test structure. 

1.L2    CLASSICAL AND FINITE ELEMENT APPROACHES 

Clarkson [1 p33-35] presents a review of the developments by Chuh Mei and his co- 

workers in determining the nonlinear response of beams and plates using the equivalent 

linearization method. Mei and Wentz [27] and Mei and Prasad [28] consider the geometric 

nonlinearity of large deflection of composite panels including various lay up angles and 

numbers of plies. The theoretical development is given for single mode response using the 

equivalent linearization technique. Mei and Prasad [28- 30] considered the effect of 

transverse shear.   Chiange and Mei [31] developed the equations for the multimodal 
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representation of a beam.  Locke and Mei [32] extended the work to the multimodal 

response of thermally buckled plates. By including the in-plane stretching effect in the bending 

formulation, the nonlinear deflections and stresses were found to be much less than those 

predicted by linear theory at the higher levels of excitation. The total strain at the surface is based 

upon the sum of the bending and axial strains. Small deflection linear bending theory neglects the 

strain in the mid-plane. In cases where the deflections are small in comparison with the plate 

thickness, the linear bending theory of Timoshenko [33] is usually adequate. For higher load 

values, the rate of increase of the deflection with increasing load decreases due to the increased 

resistance by the tensile forces in the midplane of the plate. 

The work of Chuh Mei and his co-workers was incorporated into MSC/NASTRAN 

version 67 r 2 by Robinson, Chiang and Rizzi [34]. A new main SUBDMAP, SEMELRR, 

and a significantly modified MSC/NASTRAN SUBDMAP SEDRCVR are compiled with 

the MSC/NASTRAN delivered library of SUBDMAPs to create the new solution sequence. 

The equivalent linear rms displacements, strains or stresses, and frequencies are calculated 

by an iterative solution method. The numerical results obtained were in good agreement 

with existing solutions. The output requests and the iterative solution method are controlled 

by several new user defined PARAMeters. The versatility of the implementation will enable 

the analyst to determine the nonlinear random responses for complex structures under 

combined loads. 

Gordon [35] describes an approach for generating local area finite element models of 

aircraft structures numerically that are reasonable in size. Constant boundary stiffness is 

imposed on a finite element model of a local structural area and is updated with experimental 

modal data. The boundary stiffness updating is tuned using a model updating procedure to 

minimize the error between frequencies and mode shapes of the model and experiment.  The 

method accurately predicted the plate-like modes of two similar structures: the top plate of 

an electronics chassis and the centre bay of a stiffened aircraft panel. However, the local 

model of the stiffened panel was no better at predicting mode shapes than a clamped plate. 

The method is unable to predict non-plate-like modes of the stiffened panel. Accurate 
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experimental frequencies and model shapes are required for setting up the model and 

updating the boundary stiffness parameters. Engineering judgment is required in selecting 

the boundary stiffness design variables and in determining which modes could be accurately 

reproduced by the method. The implementation of the boundary stiffness updating is 

adequate for this type of investigation but could be improved.   The simplex search 

optimization method used converged very slowly. The proposed method should work 

equally well and converge much faster with proven optimization tools like ASTROS [36]. 

Finally, the local models tuned for minimum frequency error resulted in significantly better 

frequency agreement and only slightly lower mode shape correlation than those tuned for 

minimum mode shape error. 

1.1 J.    TIME DOMAIN METHODS APPLICABLE TO ACOUSTIC FATIGUE 

Clarkson [1 p 35-37] presents a review of the development of the time domain method by 

Vaicaitis and his co-worker for structural dynamics problems of probabilistic nature, 

particularly acoustic fatigue problems. A brief summary is presented here. Vaicaitis et al 

[37] in 1972 developed a method to simulate a boundary layer pressure field. Vaicaitis [38] 

extends the work and shows the time history of the generalized random force, its probability 

density distribution of peaks and threshold crossings. Vaicaitis and Dowell used the method 

to compare two cases from acoustic progressive wave tube tests. The estimates were about 

twice that of the measured data. Vaicaitis [39] summarizes the basic concept of the 

simulation procedures, the time domain modal solutions of the nonlinear equation and the 

Monte Carlo method as used up to 1986. Vaicaitis and Choi [40] introduce the transfer 

matrix method to obtain the response solution for a stiffened plate array. Attempts were 

made to include many forcing functions including cavity oscillations, unsteady aerodynamic 

pressures, thermal loads and random pressure. Vaicaitis and Choi [41] extended the previous 

analysis to consider fatigue life. Maekawa [42] provides one completely independent check 

on the method. The results show the magnitude of the response is between 2 to 3 times that 

of experimental results of Van der Heyde and Kolb [13]. Choi and Vaicaitis [43] use the 

transfer matrix method for predicting the response of a stiffened panel and to solve the 
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response equation. The simulation method was used to determine the time history response. 

Very close agreement between theory and the experiments of Van der Heyde and Kolb was 

achieved for nonlinear response. Robinson and Mei [44] also use the time domain approach 

with the finite element method. 

Vaicaitis [45] describes the general features of the time domain method. The key 

ingredient in this approach is the ability to simulate efficiently multi-dimensional and multi- 

variate random processes in the time-space domain [46-48].   The time domain Monte Carlo 

method consists of three basic steps: (1) realizations of random inputs and/or random 

system parameters are generated utilizing simulation procedures of random processes, (2) the 

equations of motion are solved numerically for each realization, (3) statistical moments, 

distributions and other quantities of the random response process are computed from the 

ensemble solutions. For the cases where the ergodicity condition is applicable, the ensemble 

statistics can be replaced with temporal averages thereby saving computation time. Thermal 

effects, buckling and snap through effects are included. The acoustic loads are digitally 

simulated using a multi-dimensional stationary and homogeneous Gaussian random surface 

pressure. The significant advantage of the time domain method is that it can be extended to 

regions involving nonlinear kinematic and nonlinear material behaviour. Nonlinear 

kinematic relationships are used to model the strain-displacement behaviour of flat 

homogeneous panels. Von Karman's theory of large deflection of thin plates is used to 

develop the equations of motion. A Galerkin like procedure is used to develop a system of 

nonlinear differential equations. Discretely stiffened homogeneous panels and composite 

panels are discussed. Research and design efforts for fatigue life estimation are basically 

proceeding along two lines: stress-type cumulative damage theories and fracture mechanics 

(crack growth) approaches. The fracture mechanics theories are nonlinear and deal with the 

stress intensity at the crack tip rather than the continuum state stress used in the cumulative 

damage approach. Even though significant gains have been achieved in damage estimation 

by fracture mechanics, there are many deficiencies such as proper models for random load 

spectra, predictions for crack initiation, accounting for material and manufacturing 

imperfections, and reliable knowledge of two or three-dimensional stress field states at the 
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crack tip. For composite and metallic materials, the fracture mechanics models seem to fail in 

reliable prediction of fatigue damage. In addition, the stress response of surface panels to 

random pressure is dominated by relatively high frequencies in the range of 100-1000 Hz. 

Thus, the crack growth stage for high cycle fatigue might be very short as compared to the 

crack initiation stage before a crack can be measured and assigned an initial crack size in the 

crack growth model. In the present time domain approach, it would be a straight forward 

procedure to incorporate the stress response time histories in the crack growth models and 

then estimate damage on a cycle-by-cycle basis. Due to the various uncertainties discussed 

earlier and computational difficulties for realistic structural models, such an approach is not 

undertaken in Vaicaitis' study. The earliest method of fatigue analysis based on constant 

amplitude fatigue tests is the Miles [49] cumulative damage model. Various tests [50-52] 

indicate a significant range in damage predictions. To improve on fatigue life predictions, 

cumulative damage theories that incorporate the nonlineariry of the damage rate [53 and 54] 

and stress interaction effects [55-58] have been proposed. Furthermore, the larger scatter of 

experimental data in fatigue tests has led to the general conclusion that fatigue damage is a 

random process. Numerous research efforts have been devoted to treating the fatigue 

damage as a stochastic model where the key random parameters are loading and material 

response to stress cycles [59-65]. A more refined cumulative damage rule for constant 

amplitude cycling and stochastic modeling of fatigue damage has been proposed by Kutt [66]. 

For the constant amplitude cumulative damage, an interaction function is introduced which 

accounts for the effect of the sequence of high-low and low-high cycle transitions. The 

stochastic model of fatigue damage is a function of random quantities such as loading and 

material properties. The nonlinear nature of the stress response leads to a non-Gaussian 

distribution of stress amplitudes. Analytical expressions to predict fatigue damage for non- 

Gaussian response are available for only a few limited cases [67]. A starting point in 

developing a damage theory that is consistent with the present time domain approach for 

nonlinear/non-Gaussian response is to utilize fatigue data from coupon testing. Size and 

mean stress effects, imperfections, local stress-strain relations of the material at bonds, 

connections, rivets, etc, could be built into the model utilizing experimental and empirical 

information. Vaicaitis [45] applied the cumulative damage method to an isotropic and 

discretely stiffened titanium panel and discussed the results. 
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1.1.4.     DAMPING CONSIDERATIONS 

Damping is a major factor in determining the resonant peak response of a structure. Since 

there are no theoretical methods to determine the damping factor of typical structures, 

measurements have been relied upon to estimate the frequency average values as discussed by 

Ranky and Clarkson [68].   A thorough review of the subject is found in a damping design 

guide, Soovere and Drake [69]. Many papers dealing with all aspects of damping and its 

influence on structural response were published in conference proceedings by Rogers in 1984 

[70], 1986 [71], 1989 [72], 1991 [73] and 1993 [74], Ni and Adams [75] and White and Adbin 

[76] studied the damping properties of laminated plates and beams.  Nonlinear damping is 

the next stage of sophistication. This is due to its inherent nonlinear behaviour at large 

amplitude displacements. Mei and Prasad [77-79] include nonlinear damping as well as large 

amplitude displacements in their theory. The purpose is to explain the observed broadening of 

the response peak and its increase in peak frequency of response. The first study using a 

single mode approach on a beam is extended to plates. The third study included additional 

modes. Clarkson [1 p 33] observed that the broadening does not look as great as that 

observed by White [17]. Schudt [80] and Zavodney studied the nonlinear response of beams 

excited by random excitation. The peak broadening is modelled by including cubic stiffness 

terms in the equations of motion. It can also be simulated by including higher damping 

factors. 

1.1.5    REVIEW OF RANDOM PROCESSES 

The theory of nonlinear random vibration has not reached a state of maturity. Ibrahim [81] 

indicates that although many methods of solution exist, there can be no general rule about the 

suitability of any method for a particular nonlinear system Most theories for the dynamic response 

of beams and plates for geometric nonlinearities were based upon the Duffing equation or 

equations of motion with some nonlinear stiffness term or terms. Among the most widely used are 

the Fokker-Planck equation solutions, perturbation methods, equivalent stochastic 
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linearization, stochastic averaging, cumulant-neglect closure, energy dissipation balancing and the 

time domain Monte Carlo approach [45]. Two types of excitation are usually considered: 

deterministic and random excitation. The nonlinear deterministic or sinusoidal cases results in a 

jump phenomenon. The random excitation case usually results in stochastic chaos. Gleick [82] 

describes many interesting accounts of discovery in the field of chaos. Although highly 

mathematical in origin, chaos is a science of the everyday world. It offers a way of seeing order 

and patterns where formerly only the random, the erratic and the unpredictable had been 

observed. 

Random processes are described by many others in the literature. Particularly applicable 

for acoustic fatigue is Rice's [83] mathematical analysis of random noise through physical 

devices, primarily vacuum tubes or from thermal agitation of electrons in resistors. His main 

interest is in the statistical properties of such noise contained in Part III [84], and he leaves to 

one side many of the physical results of which Nyquist's law may be given as an example. 

He first states the results, then shows that they were plausible by methods that are heuristic 

rather than rigorous. He shows that the distribution of peak values depends on a quantity No 

/ 2M where No is the number of zero crossings and 2M is the number of positive and 

negative peaks. Thompson [85] explains that for a sine wave or a narrow band process, NQ 

is equal to 2M so that the ratio NQ / 2M=1. For a wide band random record, the number of 

peaks will greatly exceed the number of zero crossings so that No / 2M tends to approach 

zero. When NQ / 2M=0, the probability density distribution of peak values turns out to be 

Gaussian, whereas, when NQ / 2M=1, as in the narrow band case, the probability density 

distribution of the peak values tends to a Rayleigh distribution. When a wideband signal is 

put through a narrow band filter or a resonant system where the filter bandwidth is small 

compared to its central frequency, we have the third type of wave that is apparently of a 

constant frequency oscillation with slowly varying amplitude and phase. The probability 

distribution for its instantaneous values is the same as that for a wide band function namely 

Gaussian. However, the absolute values of its peak, corresponding to the envelope, will have 

10 
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a Rayleigh distribution. This corresponds to peak probability distributions for the narrow 

band record. The Gaussian distribution is symmetrical about the mean value, assumed to be 

zero in this case, with the following equation, 

p(x) = -4=e-x2/2<j2 (1.1) 

The standard deviation o is a measure of the spread about the mean value. The total area 

under the curve is equal to one. Random variables restricted to positive values, such as the 

absolute values of the amplitudes often tend to follow the Rayleigh distribution, which is 

defined by the following equation, 

p(x) = 4 e-x2/2°2 x>0 (1.2) 
a 

For a wideband record, the amplitude, phase and frequency all vary randomly and an analytical 

expression is not possible for its instantaneous value. 

Newland [86] describes a stationary process as an ergodic process if, in addition to all the 

ensemble averaging being stationary with respect to time, the averages along any sample are 

the same as the ensemble averages. Strictly speaking, a random process cannot be precisely 

predicted in advance.  If it changes with time, the process is generally nonstationary. For 

engineering purposes it usually is adequate to assume the process is stationary or weakly 

stationary. The random process is said to be stationary if the probability distributions obtained 

for the ensemble do not depend upon time. 

Since there is a limit to the number of data points that can be fed into a computer, there is 

a limit to the length of the sample function that can be analyzed. This restricts the length of 

the samples and causes some loss in precision similar to that occurring in analogue data 

analysis with a finite averaging time. The accuracy depends on the length of the record in 

11 
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time and the bandwidth. However, the bandwidth is not that of an analogue filter, but it must 

be interpreted in a different way when analyzing the data digitally. 

1.1.6.    REVIEW OF BEAMS AND PLATES SINUSQIDALLY EXCITED 

Many theoretical and experimental analyses of nonlinear vibrations of beams and plates 

excited sinusoidally have been conducted. The following brief review mentions 

representative examples of the work performed. Many types of nonlinear behaviour are due to 

material properties, geometric effects, midplane stretching, nonlinear damping or any 

combination along with other types. The Duffing equation has been useful in describing cubic 

stiffness nonlinearity. The basic solutions of this equation is the backbone curve described by 

Nayfeh and Mook [87] and many others. The difficulty lies in the evaluation of the coefficients for 

various cases.  The fundamental resonance and its stability were studied by Eisley [88], 

Srinivasan [89], Bennett [90] and Bennett and Eisley [91]. The problem was first reduced 

to that of a finite degree of freedom system by applying the Galerkin method to obtain the 

steady state solutions. The resulting equations were solved using the harmonic balance 

method. The experimental results of Bennett and Eisley compared favourably with their 

analytical results, but the accuracy of the experiments seemed insufficient for precise 

evaluation of the numerical results. Yamaki and Mori [92] and Yamaki, Otomo and Mori 

[93] also studied theoretically and experimentally nonlinear vibrations of clamped beams 

using the harmonic balance method. Discrepancies between theory and experiments were 

significant with increase in amplitude. These were attributed to insufficient rigidity of the 

base frame of the beam as well as to the restricted degrees of freedom of the beam assumed 

in the theory. A variety of nonlinear responses were found to occur in connection with the 

internal and combination resonances as well as dynamic snap-through for which the 

experimental results seemed to provide effective data. Nonlinear responses of a buckled 

beam under initial axial load have been studied by Tseng and Dugundji [94]. Ray and Bert 

[95] studied the nonlinear vibration of a beam with pinned ends. They compared their 

experimental results with three models: an assumed space model, an assumed time model 

and the Ritz-Galerkin method. The Ritz-Galerkin method coincides numerically with the 

12 



CHAPTER I 

perturbation method and with the assumed-time-mode method. With all the simplifying 

assumptions made in the analyses, the results were considered validated by the experiments. 

The assumed-time-mode and the Ritz-Galerkin method were preferred over the perturbation 

method due to the ease in applying them. Caughey [96] showed the existence and stability of 

ultraharmonics and subharmonics in forced nonlinear vibrations. Countryman and Kannan 

[97] discussed the limitations of the harmonic balance method and used an iterative approach. 

Dickinson and Di Blasio [98] used orthogonal polynomials in the Rayleigh-Ritz method to 

study buckled rectangular plates. Chu and Herrman [99] studied beams and plates considering 

the possibility of modal interactions. Chaotic motions of systems with multi-positions of 

equilibria have been investigated by computer simulations and experiments by Moon [100], 

Chuster [101], Guckenheimer [102], Leven [103] and Maewal [104]. 

Nayfeh, Mook and Sridhar [105] illustrated the importance of considering internal 

resonance in nonlinear response of beams and plates excited sinusoidally. Nayfeh and Mook 

[87] defined internal resonances as frequency relationships in the presence of appropriate 

nonlinearities that lead to modal interactions when some of the natural frequencies are 

commensurate or nearly commensurate. They also describe the method of multiple scales for 

solving the equations. Nayfeh, Mook and Lobetiz [106] discuss the developments of 

nonlinear analysis of structural vibrations needed for a combined numerical and perturbation 

technique. A comprehensive review of previous work is discussed. Nayfeh [107] describes 

the perturbation method based on the method of multiple time scales and the techniques of 

using the method. Ibrahim, Afaneh and Lee [108] investigated nonstationary response 

characteristics of multimode interaction in a clamped beam axially loaded (compression) and 

harmonically excited. They examined the stochastic bifurcation of the unexcited modes of a 

clamped beam. They also discuss the developments of nonlinear analysis of structural 

vibrations. Benamar, White and Bennouna [109] studied the effect of large amplitudes on the 

fundamental mode shapes of fully clamped plates. They studied aluminium alloy plates both 

experimentally and theoretically which exhibited a high degree of geometrical nonlinearity. This 

was attributed to high in-plane stiffnesses inducing a higher contribution of the axial strain energy 

to the total strain energy at large displacement amplitudes. Even higher nonlinearities were 

obtained with composite plates. 

13 
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1.1.7.    REVIEW OF BEAMS AND PLATES RANDOMLY EXCITED 

Many theoretical and experimental analyses of nonlinear vibration of beams and plates 

excited randomly have been conducted. The following brief review mentions representative 

examples of the work performed. Nayfeh and Serban [110] studied the effect of combined 

deterministic and random excitations on nonlinear systems. Lyon et al [111] considered 

narrow band random excitation of a hardening spring oscillator represented by the Duffing 

equation. The purpose was to find out if the well known jump phenomenon can occur under 

narrow band random excitation. The multivalued response characteristics had the same 

general appearance as those for sinusoidal forcing except that the peaks are much sharper. 

Similar results were also obtained by Lennox and Yusak [112], Rajan and Davies [113], 

lyengar [114] and Roberts and Spanos [115]. Ibrahim, Lee and Afaneh [116] investigated 

stochastic bifurcation in moments of a clamped beam response to wide band random 

excitation. Schudt and Zavodney [80] studied the nonlinear response of beams to random 

excitation using an externally excited 'hardening Duffing oscillator'. The purpose was to study 

peak broadening by generating a family of typical response characteristics.  These characteristics 

represent the effects of the damping and the cubic nonlinearity coefficients in the Duffing oscillator 

when subject to random excitation. 

x + 2e^x + x+eKx3=F(t) (1.3) 

where e, £ and K are coefficients. The nonlinear term is cubic or third order. The viscous 

damping ratio coefficient is C, fixed at selected realistic values. The other coefficients are 

selected accordingly to study their effect on the response. The response is obtained by direct 

integration of the governing equation of motion using a fifth order Runge-Kutta-Vemer 

algorithm. Bennouna and White [117] studied the effects of large vibration amplitudes on the 

dynamic fundamental resonance of clamped-clamped and cantilevered aluminium alloy thin 

beams excited sinusoidally and randomly. A limited set of fatigue experiments shows a 

considerable decrease in fatigue life of the C-C beam due mainly to the axial strain, compared to 
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that of a cantilevered beam of the same material and at the same rms strain leveL Using a statistical 

approach, good correlation was achieved between predicted and measured fatigue life. 

1.1.8    IDENTIFICATION TECHNIQUES 

The identification of mathematical models to represent dynamic system in general has attracted 

considerable attention in recent years. Identification of nonlinear systems ranges from methods 

simply to detect the presence or type of a nonlinearity to those which seek to quantify the behavior 

via some mathematical models. Balachandran et al [118] studied identification of structures with 

internal resonances to highlight the difficulties posed by these resonances. The features of free 

oscillations of quadratically and cubically coupled pairs of oscillators are discussed. More 

information about nonlinear random vibration, probabilistic theory and stochastic methods can be 

found in Crandal and Mark [119], Lin [120], Caughey [121], Spanos [122], Roberts [123 and 

124], Ibrahim et al [125], X. Zhang et al [126], Elishakoff and X. Zhang [127] and Cederbaum et 

al [128]. Cederbaum's book covers among other topics random vibration of laminated 

composite plates, nonstationary random excitation and micromechanics of fibre-reinforced 

composites. Shinozuka [129] shows the generation of sample functions of a homogeneous 

Gaussian vector process by using the Auto-Regressive-Moving-Average (ARMA) method. 

Stry and Mook [130] developed a technique based on the Maximum Model Error (MME) 

optimal estimation approach. The most significant feature of this work is the ability to identify 

nonlinear dynamic systems without prior assumptions regarding the form of the nonlinearities. 

This method is in contrast to existing nonlinear identification approaches which usually require 

detailed assumptions of nonlinearities. Model form is determined via statistical correlation of 

the MME optimal state estimates with the MME optimal model error estimates. 

Many researchers have investigated peak broadening. Zavodney [131] demonstrates a 

procedure to identify several types of nonlinearity in structures exhibiting nonlinear 

behaviour. The limitations of random and impact excitation for the purposes of identifying 

nonlinear coupling of modes are discussed. A method for quantifying quadratic and cubic 

15 



CHAi 12R I 

nonlinearity using the jump-down bifurcation is discussed. The method uses commercially 

available instrumentation and modal analyzers and does not require state-space variables in 

the formulation. Miles [132] examined a single mode response of a plate subject to high 

intensity acoustic loading. He used a one-degree-of-freedom Duffing oscillator to model the 

temporal response of the spatial (one mode) shape function. The numerical simulation study 

showed broadening of the resonant peak in the stochastic power spectral density curve. 

Since he had only a positive cubic term and linear viscous damping, he concluded that the 

peak broadening behaviour can be effected by only a nonlinear stiffness term. Comparisons 

of stochastic response data to harmonic sweep data are also discussed for several levels of 

excitation. These studies show cases of close agreement with numerical simulation data. 

1.1.9    MODAL ANALYSIS METHODS 

The study of structural mode shapes has grown considerably over recent years as described in 

the proceedings of the International Modal Analysis Conferences (IMAC) and many other 

publications. One of the more recent publications is a keynote address by Allemang [133] at the 

Eleventh IMAC.  Many experimental modal analysis packages of software and hardware are 

commercially available that are relatively inexpensive. Rost and Brown [134] give a brief history 

of the events that led to this development Advances in electronics and computer technology 

made it practical to develop systems with a low cost per channel that can take hundreds of 

simultaneous measurements. These methods are especially useful in vibration analysis of 

complex structures. Modal analysis can be a powerful tool in the study of structural dynamics, 

but a number of assumptions and limitations are inherent Dobson [135] describes the main 

requirements which are linear behaviour together with idealised forms of damping. Some 

developments in quantifying nonlinearity are described by Tomlinson [ 136].  Meirovitch [ 137] 

defines modal analysis as the procedure of solving the system of simultaneous differential 

equations of motion by transforming them into a set of independent equations by means of the 

modal matrix. The modal matrix is defined to be orthogonal with respect to the mass matrix and 

the stiffness matrix.  Both matrices are uncoupled and orthonormal, all of which are linear 
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assumptions. Ewins [ 138] describes some of the practical theory for modal testing. Modal testing 

was originally used to define the natural frequencies and mode shapes of a structure. The 

extraction of frequencies and mode shapes is accomplished by many techniques. These range from 

selecting peaks or circle fitting, to time domain or frequency domain curve fits of frequency 

response functions or their transforms. Much simpler and less expensive methods are available 

with earlier techniques. These include the observation of sand patterns formed along the nodal 

lines of a flat structure sinusoidally excited, noting the frequencies. Accelerometer mapping of a 

vibrating structure at its resonant frequencies, yields mode shape after normalization. These suffer 

from being too time consuming and cumbersome to obtain the data in computer files. 

1.1.10    RANDOM FATIGUE METHODS 

Further fatigue work, other than that cited above, is included in this section. Lambert 

[139] develops equations for the multiple degree-of-freedom system randomly excited by 

adding both the stresses and effective frequencies of the multiple modes in the rms sense 

rather than the linear sense. His multiple mode treatment is for a 2 degree-of-freedom 

(DOF) system. The 2 DOF equations based on the linear summation and the rms summation 

are compared with the fibreglass experimental data of Brock [140]. The damage accumulated 

for each individual mode based on the linear summation is discarded because of the large 

disparity (factor of 10) with experimental results. The rms summation technique compared 

much more favourably (factor of 1.7) with experimental results. Later, Lambert [141] 

developed analytical expressions for the fatigue life of various random stress peak 

distributions. These included the Rayleigh, exponential, truncated exponential, skewed 

Rayleigh and the finite sample size Rayleigh distribution. Examples are worked out for 

aluminium alloy 7075-T6 using sinusoidal fatigue data for the distributions mentioned. 
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Bernstein [142] investigates a procedure for analytically comparing the fatigue damage 

under broad and narrow band random stress cycles. An approximate analytical expression is 

developed for fatigue damage as a function of stress levels and frequencies in multiple modes. 

This is used to determine the stress level required in a single mode to generate equivalent 

fatigue damage. He measures strains during sonic fatigue tests using both broad and narrow 

spectra to calculate damage per unit time. Small increases in the narrow band spectrum strain 

are required to make the damage equivalent to that from the broad spectrum. 

Curtis and Morte [143] investigate the increase in average times to failure which may be 

expected due to the absence of stresses in excess of ±3a and the lack of fatigue damage for 

stress reversals less than the endurance limit. Only narrow band random loads are considered. 

A Rayleigh distribution of stress peaks is assumed. As the slope of the S-N curve increases, 

the time to failure decreases as expected. The point of damage for stresses in excess of ±3<j 

is not conclusive since the author only investigated ±30. 

Blevins [144] extends the formulation of Clarkson [145] to higher modes and complex 

shapes. Approximate analytical methods are developed for determining the response of plate 

and shell structures to coherent sound fields. The methods are based on separating the spatial 

and temporal aspects of the problem and then developing approximations for both. The 

method is most applicable to relatively uniform flat or curved panels which respond out of 

plane to these pressures. It can be used for simple direct calculation of the response of panels 

to random and harmonic surface pressure loads. The method requires that the natural 

frequencies and mode shapes of the panels be calculated. Either closed form, numerical or 

experimental methods of modal analysis can be used. The method also requires that the 

relationship between modal deformation and modal stress be known if stress predictions are 

desired. Damping and the magnitude of the applied pressures are also required inputs. The 

method does not require exact knowledge of the distribution of the applied surface pressures. 

Approximate distributions are generated which are consistent with the modal response of the 

panel. Corrections are then applied to allow for the influence of the acoustic wavelength 
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relative to the wavelength of the panel modes. The method is applicable to the fundamental 

and higher modes. Comparisons with the ESDU [10] methods show that the present method 

agrees exactly for the stress in flat panels and is within 12% for the stress in a curved panel. 

The advantage of this method over the ESDU method is that it is capable of predicting 

response of complex plates and shells, and it can predict higher mode response as well as 

response to both random and deterministic stationary surface pressures. Direct comparison is 

made with experimental data for the response of an integrally stiffened titanium panel. The 

results show that the theory agrees with the experimental results within the uncertainty of the 

experimental method. 

1.2     OBJECTIVE AND OUTLINE OF THE STUDY 

The objective of this study was to improve the understanding of the nonlinear behaviour of 

beams and plates exited to high levels of vibration. The prediction of aeroacoustic and thermal 

loads and fatigue failure are not included. The focus is the development of methods to predict the 

nonlinear response of simple structures and the implications of nonlinear behaviour on fatigue life. 

A series of experimental investigations were conducted using beams and plates to understand 

the nonlinear dynamic behaviour. Clamped aluminium alloy and carbon fibre reinforced plastic 

(CFRP) beams, pinned beams, and clamped plates were investigated. Static tests were also 

conducted on beams. Linear mode shapes and nonlinear displacement shapes were studied 

together with jump phenomena. The response due to random excitation was investigated. For 

forced vibration studies of beams, electromagnetic coils and annular permanent magnets were 

used. For the plate studies, a large vibration shaker and acoustic progressive wave tubes (APWT) 

were used. Total, axial and bending strains and displacements were measured. Frequency 

responses and statistical properties are investigated. Fatigue models are developed to account for 

nonlinear bending response and multimodal effects. 

Chapter II contains a discussion of beam testing methods and instruments to measure 

displacement and strain. The advantages and disadvantages are studied.  Data acquisition and 
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processing are discussed. Static bending experiments were conducted measuring displacement 

and strain.  Sine and random excitation experiments were conducted measuring displacement and 

strain. The results of the aluminium alloy and carbon fibre beam experiments are analyzed and 

discussed. 

Chapter DI contains a discussion of the plate testing methods. The base excitation methods 

and acoustic progressive wave tube methods are discussed The advantages and disadvantages 

are studied Sine and random excitation experiments were conducted measuring displacement 

and strain. The results of both types of plate experiments are analyzed and discussed 

Chapter IV contains an evaluation of the test results. Comparisons with linear bending theory 

are made. Comparisons and trends for each experiment are discussed The nonlinear 

displacement shapes were measured accurately in great detail. The shapes are curve fitted with 

various functions and ranked according to their goodness of fit.  The bending strains are 

determined from the second derivatives of the functions. The statistical properties are 

compared and discussed. The multimodal behaviour of the beams and plates are discussed. 

Chapter V discusses the implications of nonlinear behaviour on fatigue life. The peak 

probability density functions are evaluated. Multimodal modal models to estimate the strain 

response and fatigue behaviour are presented. A multimodal fatigue model is developed and 

applied to the test data with reasonable results. 

Chapter VI discusses the conclusions made from the study. Conclusions are made from 

the test and evaluation of the data collected and the multimodal fatigue model developed. 

Recommendations for further studies are also made. 
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II    BEAM EXPERIMENTAL INVESTIGATIONS 

Zi«I« 

The objective of the beam experiments was to determine the nonlinear behaviour of 

beams excited sinusoidally and randomly and its effect on the displacements and the total, 

axial and bending strains. The behaviour was examined by measuring large transverse 

bending responses and the axial responses induced by large deflections. The tests were 

conducted at sufficiently low levels to prevent fatigue failure, which was beyond the scope 

of this study. The fatigue studies in Chapter V investigate fatigue modelling and use the 

limited fatigue data already available. 

Many factors were evaluated to obtain the desired results. The driving equipment to 

produce well defined forcing functions should have sufficient travel to cover the desired 

displacement ranges of interest. The force should be linear as much as possible. The devices 

were grouped into three categories. These were the direct or indirect attachment method, 

base excitation and acoustic excitation. Ng [146] discusses the advantages and disadvantages 

of these experimental methods. 

Using acoustic excitation for the nonlinear response of beams was eliminated because 

the levels of excitation required for the small area of the beam to be measured were not 

practical. Also, the unknowns in determining the amounts of acoustic coupling between the 

load and response complicate the analysis to a greater degree. Acoustic excitation was used, 

however, to determine linear mode shapes. This method provides a low power, inexpensive 

means with no direct attachment to alter the response. Only low level excitation is needed 

for linear modal analysis. The force should be applied off the node lines in order to excite 

the desired mode. Small acoustic drivers and horns provide a convenient means to excite 

many modes because they are easily moveable. 
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The base excitation method for beams was eliminated primarily due to cost of operation 

and manufacturing suitable fixtures. Shaker performance is another limitation. However, 

the base excitation method was used for the plate tests as discussed in further detail in 

Chapter III. 

The last method evaluated is the direct or indirect attachment method. Indirect methods 

include inductive devices which generally are not powerful enough and suffer linearity 

problems. There are many direct attachment methods, such as attaching a commercially 

available shaker directly through a slender connecting rod sometimes referred to as a 'sting'. 

The resonant responses of the sting should be outside the frequency range of interest in the 

beam response. The mass of the shaker table or 'head' and the flexural suspension system 

can introduce unwanted stiffness, inertia and damping effects on the beam response. For 

these reasons, this method was not used. 

Another direct method, a one-sided push-pull system, was selected for the beam tests. 

A simple coil and annular permanent magnet were selected for the driving system for the 

nonlinear beam experiments. Inexpensive coil-magnets are available for various 

commercially available loud speakers. Cylindrical coils were capped off by bonding discs 

on one of the ends. The disc was used to attach the coil to a beam, through a plastic screw 

bonded to the beam. These nonmagnetic materials are not affected by strong magnetic 

fields. A stiff disc was used to keep the resonant frequencies above the highest frequency of 

interest, 2000 Hz. Annular permanent magnets were aligned with the coil. This system does 

not require a suspension system since the coil is attached directly to the beam. A 

disadvantage is the added mass of the coil attached to the beam. The use of light weight 

material can minimize this effect. 

A linear coil response over the frequency range of interest is needed with a force versus 

amplitude relationship proportional to the current through the coil. This was determined by 

driving the coil attached to a suspended mass through a force transducer described in 

Appendix A. A disadvantage to this method is the back e.m.f. generated when the beam 

responds around its resonant frequencies. This produces a negative peak or dip in the force 
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spectrum with band limited random excitation. The full magnitude of the resonant response 

peak of the beam cannot be determined unless the spectrum level (1 Hz bandwidth) is flat 

across the frequency band of interest. Commercially available constant current power 

amplifiers were tested and it was found that they did not maintain a truly flat band limited 

random spectrum. Therefore, a constant current modifier was designed and developed at the 

ISVR. Further constant current modifier developments were made at the WPAFB. The 

feedback loop, shown in Fig 2 .1, provides a method of maintaining a flat force frequency 

spectrum as shown later in the data. 

The sizes of the beams were selected to produce deflections exceeding their thickness for 

the nonlinear response region but below the strain levels that produce fatigue with the 

available exciter force. The width was sufficiently large to make the torsional resonant 

frequencies higher than the bending resonant frequencies of interest. The mild steel 

clamping blocks used were heavy and rigid with resonant frequencies well above the 

frequencies of interest. The clamped boundary condition requires that there be no 

displacement in the transverse direction, the in-plane or axial direction and no rotation. The 

fixture must be capable of applying high bending moments to the beam. Axial slippage can 

create compressive stresses that cause buckling. Although no clamping blocks can be built 

to produce exactly immovable boundary conditions, they can be designed to closely 

approximate them. Very high compressive clamping pressures are needed to prevent 

slippage, but must not exceed the elastic limit of the beam. A torque wrench was used to 

determine the optimum tightness without slippage. The edges in contact with the ends of the 

beam were rounded slightly to prevent stress concentrations causing early fatigue failure of 

the beam. A tensioning block connected by a threaded rod was added to apply a static strain 

to the beams to prevent buckling due to thermal changes. Aluminium alloys expand much 

more rapidly than steel due to their larger coefficient of thermal expansion. A slight increase 

in temperature can cause the beam to buckle in the fixture. All blocks were accurately 

aligned by using a tongue and groove system and bolted to a vibration isolated bed plate as 

shown in Fig 2.2. 
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2.1.1.   MEASUREMENT TRANSDUCERS 

Various measurement transducers were tested to determine their suitability for beam 

and plate nonlinearity tests at high excitation levels. An acceptable transducer must exhibit 

linearity over the range of interest or dynamic range, low signal-to-noise ratio and the 

desired frequency response. 

2.1.1.1    DISPLACEMENT TRANSDUCERS 

Many methods are available to measure linear mode shapes and nonlinear displacement shapes 

using various transducers and techniques. Large stand-off distances for displacement 

transducers are required to prevent the test specimen from contacting the transducer. 

Displacement transducers must achieve five beam thicknesses of dynamic peak 

displacement, thus using a 2 mm beam would require 10 mm peak-to-peak displacement. 

Also, a non-contacting device is needed to prevent mass loading the vibrating surface and to 

avoid attachment problems. Another consideration is the cost per channel for the measuring 

devices. 

Optical vibration transducers were developed at the ISVR by Wright [147]. The 

intensity of the light incident on a photocell at the observation point is proportional to the 

distance between the cell and the vibrating surface. Static measurements indicated that the 

device was acceptably linear for large deflection measurements of up to approximatly 20 mm 

but was nonlinear at 40 mm. 

Fibre optical displacement methods were considered for the beam tests, but the linear 

range was considered to be too small. The distance from the fibre optic source and the 

photodetector was only 0.5 mm. 

Laser vibrometer technology is growing at a rapid pace with more capabilities, but the 

equipment costs are very high. An ISVR developed laser vibrometer available in 1989 did 
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not have sufficient range to measure the beam displacements up to the desired level. Wave 

distortion was apparent at relatively low displacement levels. A B&K laser vibrometer 

available in 1990 was tested with a clamped beam arrangement. Up to 20 mm peak-to-peak 

displacements were obtained before reaching the limit of the instrument. Advances were 

made in 1991 in scanning laser Doppler sensor technology. The rapid scanning capability 

along with automatic data collection and display methods are particularly advantageous in 

measuring mode shapes and large amplitude surface velocities. The upper velocity limit of 1 

m/s has been increased to 10 m/s which facilitates the measurement of displacement shapes 

to very high amplitudes of several beam thicknesses with a high degree of accuracy. The 

inherent accuracy of these sensors is due to small wavelengths of the light beam. These 

capabilities plus many other features have made the scanning laser Doppler sensor very 

favorable for obtaining accurate experimental surface velocities for high amplitude vibration 

of beams as well as many other structures of interest. The integration of the velocity 

amplitudes yields the displacement amplitudes. A diagram of the method used is shown in 

Fig 2.3. The vibrometer is based on an interferometer in which a laser beam is divided into 

reference and signal beams [148]. The signal beam is directed onto a vibrating surface. The 

back reflected light is re-combined with the internal reference beam. When the surface 

moves, the path difference between the reference and signal beams changes. This results in 

intensity modulation of the re-combined beam due to interference between the reference and 

the signal beams. The re-combined beam is split between two independent detection 

channels configured so that the two signals are phase shifted by ±90°, depending on the 

direction of motion of the surface. Electronic mixing of these signals with the carrier 

frequency is used to derive a single frequency shifted Doppler signal. This is converted to an 

analog voltage directly proportional to the instantaneous velocity of the vibrating surface. 

Video holography is sometimes referred to as TV- holography or Electronic Speckle Pattern 

Interferometry (ESPI). Small spatial details in the deformation pattern can be resolved within the 

field of a TV frame to detect small deformations or movements. This method was used to 

supplement the plate linear mode shape measurements. A laboratory was available at WPAFB 

with the necessary equipment. Tyrer [149] describes the theory and application of such devices. 
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The arrangement used to study linear mode shape is shown in Fig 2.4. Basically, the test object is 

illuminated by the object wave and imaged onto the target of the camera. The reference beam is 

combined in line with the object beam and the resulting interference pattern is detected by the 

camera. Video holography is limited to very small displacements. 

Other displacement transducers using ultrasonic devices and infra-red devices are 

inexpensive and looked promising. The ultrasonic devices tested reached one phase shift in 

about 2 mm which was too small. Methods of multiple phase shifting were considered but 

needed further development. Linear Variable Differential Transformers (LVDT) and eddy 

current devices were also investigated but they too had insufficient range. 

2.1.1.2 ACCELEROMETER TRANSDUCERS 

Selection of the accelerometer transducers was based upon the desired frequency range, 

linearity over the desired range of acceleration and signal-to-noise ratio. Using small 

accelerometers, the measured acceleration was integrated twice to obtain displacement 

curves of the beams. Direct attachment of a mass to the vibrating surface affects the mass of 

the vibrating system and thus changes the response and the resonant frequency of the system. 

Because the laser vibrometer method is less intrusive and more accurate in obtaining 

displacement curves than the accelerometer transducers, it was used in most of the studies. 

Accelerometers were restricted to measuring the excitation levels of the shaker system 

described in Chapter III. 

2.1.1.3 STRAIN GAUGES AND BRIDGE AMPLIFIERS 

Strain gauges having little spurious effect when used in magnetic fields were desired. 

Suitable strain gauges were readily available and relatively inexpensive. Temperature 

compensating resistive wire gauges for aluminium were selected. Many advances have been 

made to improve the accuracy of strain gauge measurements including bonding techniques. 

Temperature compensation was built into the gauge by the manufacturer using a backing 

material suitable for the material attached. A gauge length of 1 mm was selected for low 
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mass loading and because it would be small enough to locate close to the clamping frame or 

clamping block for both the plate and beam tests. Larger lengths produce larger averaging 

areas for the measurement. The same types of strain gauges were used on the CFRP material. 

The excitation voltage was changed from 3 volts to 1 volt to keep the power density lower 

for the CFRP beams and plates since the CFRP material is less conductive than the 

aluminium alloy. 

Most strain bridge amplifiers can be either AC coupled or DC coupled. DC coupling 

was selected since the in-plane stretching results in a DC offset or a mean value other than 

zero in the strain time histories. The in-plane stretching or axial strain was one of the 

primary effects of interest in this study. Many sources of electronic errors contaminate the 

strain data when the strain bridges are DC coupled. Any DC offset in the force excitation 

circuit can result in a DC shift in strain. The band pass filter, current modifier, current 

amplifier, the strain bridge amplifier and recording system are all possible sources of 

contamination. Each source was carefully checked before the start of a test to eliminate 

electronic DC offsets as much as possible. 

2.1.1.4     MICROPHONES 

The selection of microphones was based upon the desired frequency range, linearity up to 

the highest SPL of interest and the signal-to-noise ratio. Microphones were used to measure 

the SPLs in the progressive wave tube tests described in Chapter III. 

2.1.2.       DATA ACQUISITION AND PROCESSING 

A few data acquisition systems using a PC were evaluated. A portable 386 PC based 

system was selected with 16 channels of analogue to digital (A-D) conversion, antialiasing 

filters, simultaneous sample and hold, many data conversion formats, and a wide range of 

data analysis capabilities. 

27 



CHAPTER il 

Random, stationary, and ergodic processes were discussed briefly in Section 1.1.5 of 

Chapter I. Otnes and Enochson [150], Bendat and Piersol [151] and Randall [152] describe 

many engineering applications of digital time series analysis. De Jong [153] discusses 

converting analogue signals to useful digital data. 

Analogue to digital conversion involves two processes, sampling and quantization. 

Sampling is the process of measuring the value of a continuous signal at a finite number of 

points over time. Quantization is the process of rounding or truncating the measured value 

so it can be represented by a finite number of digits. The collection of all time history 

records produced by an experiment is called the ensemble that defines a random process 

describing the phenomenon. 

In order to preserve accurate frequency information when digitally sampling an analogue 

signal, the sample rate (SR) must be greater than twice the maximum frequency (f max) 

which is present in the signal or, 

SR>2fmav (2.1) Lmax 

If this condition is not met the signal content outside the frequency range 0 < f < SR/2 will 

be confused with frequencies within this range. This phenomenon is called aliasing. The 

frequency fq = SR/2 is called the Nyquist frequency. In these studies, the highest frequency 

of interest was 1000 Hz. So the time signals were low pass filtered with a cut-off frequency 

of 1500 Hz. A sampling rate of 4000 Hz, 4 times the maximum frequency present in the 

data, was selected to be conservative. 

The record length is important when time averaging is required. It also controls the lower 

frequency limit in a frequency analysis of the data. If a signal is sampled at regular intervals 

over a time period T for one Fourier transform, then the frequency of resolution A f that can 

be resolved by standard frequency analysis is, 
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Af=l/T (2.2) 

The frequency resolution A f is related to the sampling rate SR and transform size Ng by, 

Af=SR/N (2.3) 

For most cases, the sampling rate was 4000 Hz and the transform size N was 4096 or 212. 

Using Eq (2.3) the frequency resolution was 0.977Hz. 

The total number of samples N, is related to the transform size (4096) and the total 

record length in seconds T by, 

N,=(SR)Tt (2.4) 

Selecting a record length (T ) of 12.5 seconds and a sampling rate (SR) of 4000Hz, yields a 

total number of samples of 50,000 using Eq 2.4. The selection of two digitizing parameters 

determines all the other parameters. In this case the sampling rate and the transform size 

were the determining parameters. The number of non-overlapping transforms Tn is related 

to the total record length T and the time per transform T by, 

Tt 12.5 Tn   = -£- =   »  12 (2.5) 
T 1.024 

T is determined from Eq 2.2. Then the degrees of freedom are twice that of the number of 

transforms T , n 
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DOF = 2 Tn= 24 (2.6) 

A Banning window with 50% overlap was used in the frequency analysis. The statistical 

properties including probability density functions were determined from the time history 

using a VAX 11/ 780 computer with software developed at WPAFB and described in more 

detail in reference [154]. 

When a statistical measure is evaluated for a data set that is only a subset of a longer 

signal, it is desirable to have some information about the accuracy of the measure in 

estimating the true value of the desired parameter of the signal. One approach is to assume 

that the signal has a certain statistical distribution and then evaluate the potential for errors in 

calculating the desired parameter of the distribution from a finite set of data. This approach 

leads to the specification of confidence intervals around the estimated statistical measures. 

The confidence intervals of a statistical measure are based on the probability distribution 

of that measure when it is computed for a number of different sets of data taken from the 

same process. For instance, if a continuous random signal is digitally sampled and the mean 

value of a finite number of samples is evaluated, this mean value will be a random variable 

with a certain probability density function (PDF). If a certain form of the PDF is assumed, 

such as the Normal distribution, then confidence intervals can be set around the value of the 

mean based on the probable distribution of all possible values. 

The characteristics of the Normal PDF can then be used to evaluate confidence intervals 

for the sample mean value. For example, the confidence interval at ±1 standard deviation, 

a, from the mean has a 68% confidence level. Therefore, based on the sample mean value 

of the numbers/it can be stated that the true mean is within a 68% confidence interval. For 

±3G , the mean has a 99.7% confidence interval. Generally, 90-95% confidence intervals 

are acceptable. 
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In order to use the sample variance, which is calculated from the number of values, it is 

necessary to use a slightly different PDF called the Student's T distribution. The confidence 

intervals grow dramatically when the number of statistical DOF are less than 10. Generally 

20 degrees of freedom are satisfactory. Values greater than this do not significantly increase 

the accuracy. 

The Chi-squared distribution can be used to obtain confidence intervals for the estimation 

of the variance. The computation of the sample power spectral density (PSD) from the FFT 

of a digitally sampled signal involves the summation of squared quantities. The 

characteristics of the Chi-squared distribution can then be used to determine the statistical 

errors in the PSD. 

Two types of errors occur in the analysis of random data. The first called the random 

error is a haphazard scatter in the results from one analysis to the next of different samples 

of the same random data. Random errors are a direct result of the fact that averaging 

operations must be performed over a finite number of sample records or over a single sample 

record of finite length. It follows that all analyses will involve a random error. The second 

type of error called the bias error is a systematic error that will appear with the same 

magnitude and in the same direction from one analysis to the next. Bias errors generally 

evolve from windowing operations associated with the calculation of derivatives. 

2.2    C-C ALUMINIUM ALLOY BEAM EXPERIMENTS 

2.2.1 INTRODUCTION 

Modal analysis theory is generally based upon the linear assumptions of amplitude 

independence and each mode occurring at a single frequency. In the nonlinear case, the 

displacement shapes and natural frequencies are dependent upon the boundary conditions, the 

level of the excitation force and the initial conditions. The study of structural mode shapes has 

grown considerably over recent years. 
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Clamped-clamped aluminium alloy 7075-T6 flat beam tests were performed first since the 

boundary conditions could be made to closely model mathematical models, and the homogenous, 

isotropic, elastic properties provide less complicated phenomena to be considered. The clamped 

beam size was 406 x 20 x 2 mm. Strain gauges were bonded back-to-back, as shown in Fig 2.5, 

to the beam to measure total, axial and bending strains. The back-to-back arrangement was 

selected to measure the bending stains only or the axial strain only by changing the wiring 

configuration on the Wheathstone bridges in the strain bridge amplifiers. Total strain was 

measured by using a single strain gauge in the bridge. The components of the total strain due to 

bending and axial strain were determined. Sinusoidal and random linear and nonlinear beam 

displacements were measured with a laser vibrometer. The laser vibrometer was directed at the 

centre of the beam perpendicular to the surface. It was scanned 203 mm left and right of centre. 

As the distance between the beam and the laser vibrometer is increased, the error resulting from 

the angular distance decreases. The distance selected was 850 mm which was close enough to 

maintain good signal return, yet far enough away so that the largest angular deflection was 14 

resulting in a maximum error of 3%. Some of the tests were performed with static tension 

approximately 50 or 100 microstrain to prevent the possibility of buckling, others were performed 

with no pretension. The beam testing arrangement is shown in Fig 2.6. It is similar to that used 

by Bennouna [155J. The figure shows the set-up for the C-C beam tests, the excitation system, 

response measuring instruments, monitoring equipment and data acquisition system. The strain 

bridges were balanced before each testing sequence. Calibration of the data acquisition system 

removed any DC offsets. The displacement measurements were recorded from the electronic 

integrator, which converted the velocity to displacement with the proper engineering units. The 

dwell points were selected by sweeping the sinusoidal frequency of the drive coil from low-to- 

high since this method produced the largest displacements. 

2.2.2    LINEAR MODE SHAPES 

The term linear is used to distinguish between the tests described in this section and the 

nonlinear tests described in later sections. The scanning laser vibrometer method was selected to 
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measure the mode shapes since it was selected for the nonlinear tests and was capable of 

measuring small displacements. Methods using transfer function mapping, described in 

references [68-80], were not used since they require different equipment and processing. 

For these tests the beam was pretensioned to 100 microstrain. Five bending vibration modes 

were found between 0-1000 Hz. Early testing with a moveable dynamic force indicated that the 

odd modes required less force than the even modes when the force was placed at a maximum 

deflection point on the beam. In later tests the mode shapes were measured with the beam excited 

by an acoustic driver without the exciter coil mass attached as shown in Fig 2.7. Various horn 

arrangements were tested. More consistent results were obtained using a horn, with a small 

diameter (1.5 mm) which could be moved away from the nodal lines to excite the mode of 

interest. Both symmetric and antisymmetric modes were obtained by moving the acoustic driver 

away from nodal points. 

Filtered random excitation between 10-1000 Hz was used and the beam response examined to 

determine which frequencies to use for the sine dwell test to obtain the mode shapes. These were 

measured with a scanning laser vibrometer. A typical displacement time history is shown in Fig 

2.8. The displacement spectral densities with the excitation concentrated at 1/4,1/6 and 1/8 the 

length of the beam are shown in Figs 2.9,2.10 and 2.11. The amplitudes of the peaks change 

with the driver location, but six distinct resonant peaks are clear at 85,205, 380, 612,765 and 898 

Hz. The strain spectral densities are shown together in Fig 2.12. The same six peaks are clear 

except for the one at 765 Hz. The harmonics of the electrical supply noise (60 Hz in USA) in the 

strain measurements are clear at 180, 300, 420, 540, 660 and 780 Hz. The mode shapes 

associated with the six peaks are shown in Fig 2.13. The first mode occurred at 85 Hz, the second 

at 207 Hz, the third at 380 Hz, the fourth at 612 Hz and the fifth at 898 Hz. These follow the 

linear vibration theory in which higher order modes occur at higher frequencies. For example, 

the second mode occurs at a higher frequency than the first mode. The 765 Hz displacement 

response frequency occurs between the fourth and the fifth modal frequencies, which is unusual. 

Its shape appears similar to the first mode with a broader and lower amplitude peak. It is also 

slightly unsymmetrical about the centre of the beam. Lacking a better term, it is labelled as a 

distorted first mode. The 765 Hz mode was not a flexural mode of the beam since it does not fit 
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modal analysis theory which states that the first mode can only occur at a single frequency which 

is lower than the second and higher order modes. Strictly speaking, the mode shapes shown are 

not really mode shapes because there are small off resonance contributions from other modes as 

seen in the displacement power spectral densities. Considerable effort was devoted to 

determining the nature of this phenomenon. The shape observed was not a torsional mode of the 

beam nor a longitudinal mode. The nature of the behaviour was not established but could only be 

associated with a resonance of the whole structural system. 

The beam was excited with slow sine sweeps at low levels to determine damping for the 

first mode using the half power point bandwidth method. The following relationship is 

used, 

r =.?- = — (2.7) 
c„     2f 

where £ is the viscous damping ratio, c is the damping coefficient, cc is the critical 

damping coefficient, Af is the half power point frequency bandwidth, and fQ is the peak 

frequency. With the exciter coil attached to the beam, the viscous damping ratios measured 

were 1.89%, 1.85% and 1.92%. No measurable difference in damping for the beam was 

found with or without retro-reflective laser tape which is used to lower noise in vibrometer 

measurements. An example of response to a sine sweep is shown in Fig 2.14. A typical 

value for the material viscous damping ratio for aluminium alloys is 0.5%. A typical value 

for the structural damping of joints [156 p 81] is 1.0%, which is about one half of those 

measured. Acoustic radiation damping should be smaller than the measured values. The 

damping increase above 1% is attributed to the coil magnet arrangement, which acts like a 

piston with a large clearance. 
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2.2.3    NONLINEAR STATIC DEFLECTION SHAPES 

Static deflection shapes were measured for the C-C aluminium alloy beam by applying DC 

current to the exciter coil and measuring the displacements with a dial gauge. The displacements 

measured and the loads applied at the centre of the beam are shown in Fig 2.15. The 

displacements increase with an increase in the applied force and are symmetrical about the centre 

of the beam. The centre displacement increases almost linearly from 0 to 7.2 N as shown in Fig 

2.16. At higher loads, the displacements do not increase proportionally to loads. One bending 

'rule-of-thumb' indicates applicability of linear theory for displacements up to 50% of the beam 

thickness. The measurements indicate that accuracy decreases for displacements higher than 

34%. The shape of the displacement curve is similar to that of the strain curve. 

The total strain measurements at six locations and the linear beam theory results are shown in 

Fig 2.17. Strain measurements were taken as the test loads increased and decreased. Very little 

hysteresis is observed in the data. Neither strain pair, at the centre of the beam and near the clamp 

are equal in magnitude. The tensile strains are higher than the absolute value of the compressive 

strains. None of the strains are as great as the linear pure bending theory. Linear theory 

'A'shown in the figure is from Roark [157 pi 12]. For a rectangular C-C beam with the applied 

force at the centre, the maximum positive bending stain at the centre and the maximum bending 

strain near the clamp can be calculated using, 

lF^h/2) = 333 forF=10Nj (2.8) 
8      El 

where eb is the bending strain, F is the force, h is the thickness, E is Young's modulus, and I is 

the second moment of the area of the cross-section.  Using a force of 10 N yields 333 microstrain 

whereas the measured bending strain was 285 microstrain. Similarly, the compressive bending 

theory at 10 N indicates -333 microstrain compared with a measured value of -215 microstrain. 

The accuracy of pure bending theory decreases when the strains increase above 50 microstrain. 
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The measured strains are somewhat less than linear theory due to the stretching of the beam, 

which is one form of nonlinearity. 

2.2.4    NONLINEAR ALUMINIUM ALLOY BEAM SINUSOIDAL EXPERIMENTS 

In the nonlinear case, the displacement shapes and natural frequencies are dependent upon the 

level of the excitation force and the frequency as described in reference [86]. The modal analysis 

methods described briefly in Section 1.1.9, references [68-80], are not applicable because they are 

based upon linear theory. Superposition, which is based upon linear theory, also is not applicable. 

Strictly speaking, the term mode is not applicable, but will be used to describe the fundamental 

spatial response and higher order resonances. The term nonlinear displacement shape will be 

used to describe the shape of the resonant frequency response. 

When the excitation frequency is increased slowly during sinusoidal excitation of a C-C 

aluminium alloy beam, jump phenomena are observed by a large drop in amplitude over a small 

increase in frequency. The fundamental resonant frequency increased from 44 Hz to 63 Hz as the 

excitation level increased as shown in Fig 2.18. The frequencies were noted from the display on 

the signal generator. Jump phenomena are also observed when the frequency is above resonance 

and slowly swept to lower frequencies. The resonant frequency changed from 51 Hz to 42 Hz. 

At lower excitation levels similar phenomena are observed with a smaller increase or decrease in 

range of resonant frequencies and lower amplitudes of vibration. The jump phenomenon exhibits 

the characteristics of a hardening Duffing oscillator Eq (1.3), a cubic nonlinearity. The back-bone 

curve described in reference [86] bends toward the right with the added cubic term in the equation 

of motion. If the curve bends toward higher frequency response, it is called a hardening spring 

nonlinearity. The dwell points were selected by sweeping the frequency from low to high. Six 

excitation levels were selected near the jump down frequency measuring the displacement at the 

centre and the total strains. The tests were repeated as closely as possible to measure the bending 

strains after changing the configuration of the strain bridge amplifiers. The axial strains were 

determined during the third set of tests after changing the configuration of the strain bridge 

amplifiers. If the frequency was too close to the jump frequency, the response would often jump 
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down during the recording, before acquiring the full time history. The excitation was reduced in 

0.1 Hz increments until stability was achieved. The total, axial and bending strains for the six 

different force levels are shown in Fig 2.19. The total strain is usually the sum of the axial and 

bending strain components, however, for these tests the bending strain was slightly higher than 

the total strain. This was primarily due to conducting the tests near a jump point, an instability in 

the beam response that made it difficult to repeat the measurement more accurately. The total and 

bending strains are nonlinear with little increase in the driving force. The bending strain does not 

increase linearly with the excitation force. The axial strains are about 11% of the total strains at a 

higher excitation level, 2 N. 

The displacements shown in Fig 2.20 were measured with a scanning laser vibrometer at the 

centre of the beam. Displacement amplitudes of slightly more than one beam thickness are 

shown in the figure. The strain versus displacement relationships are slightly nonlinear at the 

higher excitation levels. The strain measurements at the centre, SG 1 and 4, are nearly equal 

except for the highest displacement. The strain measurements near the edge of the clamping 

block where SG 3 and 6 are located are greater than those at the centre. The strain measurements 

near the edge of the clamping block, where the displacements are zero, are shown in the figure for 

comparison purposes. These strain measurement pairs are nearly equal. 

The nonlinear displacement shapes were measured using a scanning laser vibrometer. The 

dwell points were selected by sweeping the frequency from low to high. Six excitation levels 

were selected near the jump down frequency. Examples of unsmoothed first mode nonlinear 

displacement shapes for a C-C aluminium alloy beam are shown in Fig 2.21. The frequencies 

increase from 54.8 Hz to 67 Hz from the smallest to the largest displacement shapes measured. 

The peak displacement amplitudes increase with increasing sinusoidal excitation levels. The 

displacement measurements along the length of the beam (raw data) contained some small 

variations from a smooth curve. The beam was essentially flat and uniform with no 

discontinuities that would cause variations in closely spaced measured displacements. The 

variations seem to be in the laser vibrometer. The displacements were limited to velocities less 

than 1 m/s for these tests due to the vibrometer range limitation. Also, RMS values were used for 

smoothing the curve since the peak option was not working properly on the newly developed 
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instrument. Many noise peaks were apparent when using the peak option on the instrument. The 

ends of the beam show large curvature due to the high bending moments at the clamp. This 

curvature reverses as expected around the centre region of the beam. 

The third resonant response of the beam was also examined. Nonlinear displacement shapes, 

shown in Fig 2.22, result in a centre peak much lower in amplitude than the two on either side. 

The reduction in amplitude at the centre of the beam in the displacement shapes for the third 

mode is due to the mass of the coil (26.7 g) attached to the beam. In this case, the centre peak is 

inverted since the scanning vibrometer only measures peaks in a positive fashion and the phase 

could not be determined. From other tests, it was shown that the peaks are out of phase. The 

shapes shown in the figure were obtained from a seventh order polynomial fit of the 

displacement shape data. The coefficients for the fit are listed in Appendix B, Table B-2.1. 

Attempts to obtain the second derivatives of the third and fifth nonlinear displacement shapes 

were postponed until more accurate curve fitting techniques could be developed. 

The motion of the clamping blocks was measured at the highest level of excitation with the 

laser vibrometer. The maximum displacement of the beam at the fundamental frequency was 

1.65 mm rms. The corresponding displacement of the tensioned clamping block was 0.00716 

mm rms. The displacements at the other block was 0.00507 mm rms. These displacements are 

0.434%and 0.307% respectively of the displacement of the beam. While not perfect, the 

clamping blocks were reasonably effective in minimizing the motion of the beam at the ends. 

2.2.5     NONLINEAR ALUMINIUM ALLOY BEAM RANDOM EXPERIMENTS 

Random excitation tests were conducted with a C-C aluminium alloy beam by bandpass 

filtering the wide band random voltage output from the signal generator to include the first modal 

responses, the first and third modal responses and the first, third and fifth modal responses. Five 

excitation levels below the fatigue endurance level were selected to measure the displacement and 

the total strain. The tests were repeated twice to measure the bending and axial strain response, 

similar to that described for the sine dwell tests. The excitation spectra are shown in Fig 2.23 for 
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the 10-1000 Hz tests, which are nearly flat up to 1000 Hz. The strain spectral densities for the 

gauge near one clamp (SG 3) are shown in Fig 2.24. Well separated resonant peaks appear 

around 50 Hz and 300 Hz with nearly equal amplitudes. The next highest peak appears around 

750 Hz, followed by 1450 Hz. It is interesting to note that a peak appears around 700 Hz at this 

location which almost vanishes in the strain spectral densities for the centre strain location (SG 1) 

shown in Fig 2.25. This frequency response could be the same response found in the mode shape 

studies which was denoted as a distorted first mode. It should be noted that the peaks contain 

some contribution of other off resonant peaks. The bending modal frequencies of vibration, of 

course are iioj harmonically related. The axial strain response is twice that of the bending 

frequency. 

Excitation was band limited from 10-400 Hz for these tests. The axial strains remain positive 

as shown as in Fig 2.26 as expected, since the beam stretches twice for each bending cycle. An 

example of the total, axial and bending strain spectral densities is shown in Fig 2.27. The axial 

strain response is not a resonance but is due to the bending resonance producing a stretching 

effect. The axial strain results from the stretching of the beam when the beam deflects from its 

initial position. The longitudinal beam resonances are well above the frequencies of interest and 

do noj affect the axial strains. The subharmonic (75 Hz) and the fundamental (150 Hz) peaks are 

of nearly the same amplitude. The 75 Hz axial peak is much lower than the 75 Hz Joja] peak. 

The axial peak at 450 Hz and 700 Hz are evident. The axial fundamental frequency response and 

the harmonics add to the total strain spectrum filling in the gaps between the bending strain 

response. The higher the deflections, the higher are the axial strains. 

The total, bending and axial overall rms strain levels obtained are shown in Fig 2.28. The 

total strain increases at a much lower rate than the axial strain. The bending strain rate follows 

that of the total strain minus the axial strain. The shape of the total strain curve seems to follow 

the characteristics of a parabola. As the excitation levels increase, the axial strain increases at a 

slightly higher rate than the excitation level. The axial strains are in tension adding to the tensile 

bending strains and subtracting from the compressive bending strains. This affects the mean 

value by shifting it toward the tensile side. Higher peak values tend to shorten fatigue life. 
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This shift in the mean and the reduction of the bending strains as the axial strain increase results in 

a nonlinear increase in the total strain as the excitation level increases. The axial overall rms 

strains are about 10% of the total strains at the 5.5 N excitation level. The axial strain would be a 

higher percentage of the total strain if a longer beam were utilized. The total strains exhibited 

some frequency increase and peak broadening as the excitation level increased. The bending 

strains without the effects of the axial component also exhibited some peak broadening. 

The excitation force amplitude probability density functions (APDFs) were determined for the 

experimental tests. The program used computed the PDFs by taking out the mean values, 

assuming a zero mean. This results in the V axis of force divided by the rms value. The mean 

values, were added back in which results in the V axis of force divided by standard deviation. 

This method is used for all the force and strain APDFs. The APDFs for five different levels of 

10-1000 Hz random excitation are shown in Fig 2.29. Most of the force APDFs follow that of a 

Gaussian distribution. Producing linear excitations is a prerequisite to examine nonlinear 

response. The lower levels of excitation indicate some symmetric offset which can be attributed 

to a slight DC offset in the recording system or the constant current modifier. The force was 

determined directly from the current applied to exciter coil, coming from the signal generator 

which should be Gaussian. The strain amplitude probability density functions (APDFs) for the 

five different excitation levels at the centre of the beam (SG 1) with 10-1000 Hz random 

excitation are shown in Fig 2.30. While the APDFs are close in shape, some characteristics are 

noted. One effect of the axial strain is to shift the mean to some positive value, but since the axial 

strains are small, this effect will be small. If this is the only effect, the amplitude APDFs would 

be symmetric about the mean. This is not observed in the APDFs. The APDFs approach zero at 

+3 sigma and -2.8 sigma, while the Gaussian function approaches zero around ± 3.5 sigma. The 

measured APDFs are not symmetrical about their mean value. More larger positive amplitudes 

occur than large negative amplitudes especially at the higher excitation levels, which is an 

indication that the beam response becomes more nonlinear at higher excitation levels. The strain 

APDFs for the strain near the clamp (SG 3) at the 12.2 N excitation level are shown in Fig 2.31. 

Similar characteristics are noted as those for SG 1.  More larger positive amplitudes occur than 

large negative amplitudes. 
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2.3     C-C CFRP BEAM EXPERIMENTS 

2.3.1 INTRODUCTION 

Similar tests were conducted with a C-C CFRP beam (406 x 20 x 1.98 mm). The beam was 

fabricated using Hercules AS4 /3501-6 unidirectional prepreg tape with AS4 fibres in a 3501-6 

matrix (0° / ±45° / 90°). The fibre volume fraction was 58.7%. The beam size was essentially 

the same as that of the aluminium alloy beam as well as the test set-up and strain gauge locations. 

This permits some direct comparisons to be made between the behaviour of the aluminium alloy 

beam and the CFRP beam. 

2.3.2 LINEAR CFRP BEAM MODE SHAPES 

The beam was pretensioned to 50 microstrain. Mode shapes were measured with the beam 

excited by an acoustic driver without the exciter coil mass attached to the beam as shown in Fig 

2.32. The modes were obtained by moving the acoustic driver away from nodal points. The 

amplitudes of the peaks changed with the driver location. The displacements were measured with 

a scanning laser vibrometer. The antisymmetric modes were not clear or well formed. The first 

mode occurred at 107 Hz, the third at 503 Hz and the fifth at 1201 Hz. 

2.3.3 STATIC CFRP BEAM MEASUREMENTS 

Static bending strain measurements were made with the C-C CFRP beam by applying DC 

current to the exciter coil in the same test rig as that used for the aluminium alloy beam tests. 

Similar results were obtained with the CFRP beam as shown in Fig 2.33. The observations made 

in Section 2.2.3 are applicable to the CFRP beam. The tensile strains at the centre of the beam and 

near the clamp are not equal in magnitude. The tensile strains are higher than the absolute value 

of the compressive strains due to the axial strain from the beam stretching. Both are not as high 

as those predicted by linear pure bending theory. Strain measurements were taken as the test 

loads increased and decreased. Very little hysteresis is observed in the data. The relationship 
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between the strains and displacements for two strain locations is shown in Fig 2.34. This 

relationship is nearly linear. The absolute magnitudes of the strains are lower at the centre of the 

beam than those near the clamp. 

2.3.4    NONLINEAR CFRP BEAM SINUSOIDAL EXPERIMENTS 

The frequency was slowly swept from low-to-high at a constant excitation level near the first 

resonant response. A summary of the frequency sweeps is shown in Fig 2.35. The shifts in the 

jump frequency cover a range of 53 to 91 Hz. Bistable response is observed when the frequency 

is slowly swept for each excitation level over the frequency range of 50 to 91 Hz. Five different 

levels were selected for each test recording the displacement responses from the vibrometer at the 

centre of the beam. These are shown in Fig 2.36 to observe the jump phenomena. The frequency 

response is not symmetrical even for the lowest level of excitation (0.025 N). As the force level 

increased from 0.826 to 1.77 N, the jump frequency increased from 65 to 91 Hz. The frequency 

was slowly swept from high -to- low as shown in Fig 2.37. At the higher excitation levels, the 

displacement jumps up to a higher value, then settles to a slightly lower value. As the levels 

decrease, the jump up frequencies decreased from 73 to 50 Hz. The amplitudes before and after 

the jump do not follow along the same deflection curve. Five frequencies were selected around 

the first resonant response and the amplitudes were slowly increased as shown in Fig 2.38. Jump 

up phenomena are noted at 2.8, 3.8,4.5,4.9 and 5.6 N. Five frequencies were selected around the 

first resonant response and the amplitudes were slowly decreased as shown in Fig 2.39. Jump 

down phenomena are noted at 3.8, 3.4, 3.0,2.7 and 2.3 N. Bistable response was observed for 

changes in the excitation level at a constant frequency over the frequency range of 56 to 66 Hz. 

Sine dwell tests were conducted near the jump point. The total, axial and bending strains 

measured for different excitation levels of the fundamental resonant frequency response along 

with the displacements from the vibrometer are shown in Fig 2.40. The frequencies increase 

from 56.6 Hz to 75.3 Hz which were similar to the aluminium alloy beam tests. The 

displacements are higher than those of the aluminium alloy beam tests, but the total strains are 
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lower. Also the axial strains are a larger percentage of the total strains, which increased with 

higher excitation levels. 

The nonlinear peak displacement shapes were measured using a scanning laser vibrometer. 

The dwell points were selected by sweeping the frequency from low to high. Seven excitation 

levels were selected near the jump down frequency. Examples of the first mode unsmoothed 

nonlinear displacement shapes for a C-C CFRP beam are shown in Fig 2.41. The frequencies 

increase from 56.3 Hz to 74.0 Hz from the smallest to the largest displacement shapes measured. 

The peak displacement amplitude increases with increasing levels of sinusoidal excitation. The 

displacement measurements along the length of the beam (raw data) contained some small 

variations from a smooth curve. The beam was essentially flat and uniform with no 

discontinuities that would cause variations in the closely spaced displacements measured. The 

ends of the beam show large curvature due to the high bending moments at the clamp. This 

curvature reverses as expected around the centre region of the beam. Large curvature is observed 

around the central region of the beam. 

Higher order resonant frequencies were examined for the peaks found at 370,389,899 and 

1042 Hz. The 370 Hz nonlinear displacement shape is shown in Fig 2.42. The shape is similar to 

the theoretical linear second mode, two peaks and three nodes, but the amplitudes of the peaks are 

not equal and symmetrical about the centre of the beam. The lower peak is 73% of the higher 

peak. The 389 Hz nonlinear displacement shape is shown in Fig 2.43. The shape is similar to the 

theoretical linear third mode, three peaks and four nodes, but the amplitudes of the peaks are not 

equal and symmetrical about the centre of the beam. The lowest peak is affected by the mass of 

the exciter coil attached to the beam. The next lowest peak is 75% of the highest peak. The 370 

Hz response peak (second mode) is very near to the 389 Hz peak (third mode). The 899 Hz 

nonlinear displacement shape is shown in Fig 2.44. The shape bears a slight resemblance to that 

of the theoretical linear fourth mode, four peaks and five nodes, but the amplitudes of the peaks 

are not all equal and symmetrical about the centre of the beam. The 1028 Hz nonlinear 

displacement shape is shown in Fig 2.45. The shape is similar to the theoretical linear fifth mode, 

five peaks and six nodes, but the amplitudes of the peaks are not equal and symmetrical about the 

centre of the beam. The lowest peak is affected by the mass of the exciter coil attached to the 
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beam. The next lowest peak is 69% of the highest peak. Two pairs of peaks appear on each side 

of the centre peak. Each pair is nearly equal in amplitude. The 889 Hz frequency peak is 

relatively close in frequency to the 1042 Hz peak. The closeness in frequency of the last two 

pairs of frequency peaks resulted in distortion of the displacement shapes. 

2.3 J     NQNLINEAE CFRP BEAM RANDOM EXPERIMENTS 

Random excitation tests were conducted with a C-C CFRP beam similar to those with the 

aluminium alloy beam which included the first, third, and fifth resonant response frequencies. 

The excitation spectra are shown in Fig 2.46 with a flat excitation level from 10-1300 Hz. The 

strain spectral densities for the centre gauge are shown in Fig 2.47. Well separated resonances 

appeared around 60 Hz, 400 Hz and 1030 Hz. It should be noted that the peaks contain some 

contribution of other off resonant peaks. These were similar to those of the aluminium alloy 

beam but the frequencies were higher. Again the second harmonic of the fundamental appeared 

at a much lower level than the fundamental. The strain spectral densities for the gauge near the 

clamp are shown in Fig 2.48. Two additional peaks appeared around 365 and 895 Hz at this 

location along the beam length. These correspond to the 370 Hz resonance (second resonant 

response shape) and the 899 Hz (fourth resonant response shape) discussed earlier. The 

displacement spectral densities for the centre of the beam are shown in Fig 2.49. The 

displacement amplitudes for the third and fifth resonances are much lower than the fundamental 

which was not the case for the strain amplitudes. An example of the overall total, bending and 

axial strain levels together with the displacements at the centre of the beam are shown in Fig 2.50. 

The total strains are higher than the bending strains. Again the axial strains are much lower than 

the total strains and a higher percentage of the total strain than for the aluminium beam. 

The excitation force amplitude probability density functions (APDFs) for five different levels 

of 10-1300 Hz random excitation are shown in Fig 2.51. Most of the PDFs followed that of a 

Gaussian distribution except the lower levels of excitation. Some symmetric offset occurs which 

can be attributed to a slight DC offset in the recording system or the constant current modifier. 

The APDFs shown in Fig 2.52 are similar to those for the clamped aluminium alloy beam tests. 
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The strain APDFs for the five different excitation levels are shown in Fig 2.53. The APDFs 

approach zero at +3.5 sigma and -2.7 sigma, while the Gaussian function approaches zero around 

± 3.5 sigma. The measured APDFs are not symmetrical about their mean. More larger positive 

amplitudes occur than large negative amplitudes especially at the higher excitation levels, which 

is an indication that the beam response becomes more nonlinear at higher excitation levels. This 

effect is greater for the CFRP beam than that observed for aluminium alloy beam in section 2.25. 

The response of the CFRP beam is more non-Gaussian than that of the aluminium alloy beam. 

2.4 P-P ALUMINIUM ALLOY BEAM EXPERIMENTS 

2.4.1 INTRODUCTION 

A pinned-pinned aluminium alloy 7075-T6 beam (405 x 218 x 2 mm) was machined as a 

single piece. The pins were 3.02 mm in diameter which rotated in brass bushings mounted in 

steel blocks as shown in Fig 2.54. The assembly was bolted to the same test rig used for the 

clamped beams described in section 2.2.  A longer exciter coil was also fabricated in order to 

maintain a linear current-force relationship since the displacements were much higher for the 

P-P tests than the C-C tests. The mass of the new coil assembly was 66 g, 39.6 g heavier 

than the coil assembly for the C-C tests. Modifications were made to the current modifier 

for the higher currents required with the longer coil. The calibration curves for the longer 

coil and magnet assembly are shown in Appendix A. This was determined by driving the 

coil attached to a suspended mass through a force transducer. 

2.4.2 LINEAR P-P ALUMINIUM ALLOY BEAM MODE SHAPES 

The beam was pretensioned to 50 microstrain. Five bending vibration modes were found 

between 0-1200 Hz. The mode shapes were measured with the beam excited by an acoustic driver 

without the exciter coil mass attached to the beam. Both symmetric and antisymmetric modes 

were obtained by moving the acoustic driver away from nodal points. The displacements were 

measured with a scanning laser vibrometer. The amplitudes of the peaks changed with the driver 
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location, but five resonant peaks were clear. These occurred at 72,174, 323,538 and 789 Hz, 

which correspond to the first to the fifth modes of vibration. 

2A3     NONLINEAR P-P ALUMINIUM ALLOY BEAM STATIC MEASUREMENTS 

Static bending strain measurements were made with the P-P beam by applying DC current to 

the exciter coil in the same test rig as that used for the other beam tests. The total strain 

measurements are shown in Fig 2.55 except for the strain locations near the pins. Strain gauges 3 

and 6 were located too near the stress concentrations produced by the pins to provide any 

meaningful data. The tensile strains at the centre of the beam are 488 microstrain at 17.5 N and 

the compressive strain, minus 333 microstrain. The tensile strains are higher than the absolute 

value of the compressive strains. Both are not as high as the linear pure bending theory. The 

strains at the 1/4 £ position are both in tension, 109 and 46 microstrain. The strains near the pin 

location are 123 and minus 151 microstrain. This indicates that bending is present near the pins. 

Linear bending theory for pinned boundary conditions indicates that the strain at the pin should be 

zero. The compressive strains are not as high in magnitude as the tensile strains due to the 

stretching effect. Slightly more hysteresis is observed than in the results for the clamped beam 

tests. The shape of the strain curves in Fig 2.56 shows more curvature than the shape of the 

displacement curves for the clamped beams. Linear bending theory is accurate at very low force 

levels, but it does not describe the nonlinear behaviour at the higher load levels. These include a 

smaller displacement amplitude and strain level as the load increases and a shift in the neutral axis 

toward the tensile side of the beam. The stretching effects shift the neutral axis. It also causes a 

small reduction in the cross-sectional areas which reduces the second moment of area of the 

cross-section. Linear theory assumes the second moment of area of the cross-section to be 

constant. 
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2.4.4     NONLINEAR P-P ALUMINIUM ALLOY BEAM SINUSOIDAL 

EXPERIMENTS 

The nonlinear displacement shapes were measured using a scanning laser vibrometer. The 

dwell points were selected by sweeping the frequency from low to high. Seven excitation levels 

were selected near the jump down frequency. Examples of the first mode unsmoothed nonlinear 

displacement shapes for the P-P aluminium alloy beam are shown in Fig 2.57. The frequencies 

increase from 27.9 Hz to 46.8 Hz from the smallest to the largest displacement shapes measured. 

The displacement measurements along the length of the beam (raw data) contained some small 

variations from a smooth curve. The beam was essentially flat and uniform with no 

discontinuities that would cause variations in closely spaced displacements measured. The peak 

displacement amplitude increases with increasing sinusoidal excitation. The ends of the beam 

show little curvature since the pins theoretically do not impart a bending moment. High 

curvatures are observed in the centre region of the beam. The P-P beam mode shape (low level of 

excitation) should have a sinusoidal shape, which is discussed in more detail in section 4.3.3. 

2.4.5 NONLINEAR P-P ALUMINIUM ALLOY BEAM RANDOM EXPE1 

Random excitation tests were conducted with a P-P aluminium alloy beam similar to those 

conducted for the other two beam tests. The bandwidths of the resonant peaks were wider than 

expected due to the friction of the pin-bushing arrangements. Also more damping from the 

longer coil was to be expected. The pins and coil added much more damping to the system than 

desired, which limits the usefulness of the data. For these reasons, this part of the study was not 

taken further. 

47 



CHAPTERS 

III    PLATE EXPERIMENTAL INVESTIGATIONS 

3.1    BASE EXCITATION METHOD 

3.1,1    INTRODUCTION 

Base excitation methods are useful in studying geometrical nonlinear responses of plates. 

These methods use the inertia effects of a plate to provide the loads by exciting the clamping 

frame or fixture. Well defined forcing functions from accelerometer measurements can be 

determined. When the force measurement is simultaneously acquired with the strain or 

displacement measurements, the transfer functions can be determined. Other advantages of 

this indirect method of attaching the plate to the exciter are that it does not mass load the 

plate or contaminate the response with responses from attachment devices. The 

disadvantages of the capital investment and cost of operations of the shaker were within 

acceptable limits for this project since the shaker and operational support were readily 

available. The disadvantages of the fixture design and manufacturing costs were negligible 

since the fixture was already available and had been used by Ng [146] in his studies. The 

sizes of the plate and clamping arrangement were selected based upon the weight limitations 

of the shaker, the frequency response limitations and the prevention of fatigue damage 

during the response tests. 

The base excitation method used a 6.53xl0? N (12,000 Ibf) electrodynamic shaker. The 

shaker performance limitations are shown in Fig 3.1. Choosing a 133 N (30 Ibf) payload for 

the fixture design results in a low frequency roll-off at 180 Hz with 100 g acceleration 

sinusoidally. This was acceptable since the calculated first mode response was around 200 

Hz for the aluminium alloy plate and higher for the CFRP plate. The clamping fixture 

consisted of a flat aluminium alloy 6061-T6 plate 19 mm thick and four clamping bars of 

equal thickness as shown in Fig 3.2. Eight bolts were used to fasten the fixture and plate to 

the shaker head. Aluminium alloy spacers were used at the eight locations to allow sufficient 
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space between the plate and shaker head to prevent radiation damping of the small volume of 

air from affecting the response. 

The radius of curvature of the clamping edges was 4.76 mm to prevent early fatigue 

failure. A four bar clamping arrangement was selected to prevent buckling of the plate 

while torquing the clamping bolts. The comers of the clamping plate were cut off to save 

weight. The fixture rigidity was sufficiently high so that the resonant frequencies were well 

above the plate resonant frequencies of interest. The clamped boundary conditions require 

infinite bending and axial rigidity, which cannot be achieved exactly but can be closely 

approximated. The fixture design was a trade off among the shaker performance, the fixture 

rigidity and the total weight. 

The shaker head was rotated to the vertical position. The panel resonant response motion was 

perpendicular to the direction of gravity. This method was selected to prevent the effects of 

gravity from affecting the strain and displacement measurements. Since the vibrometer at its 

lowest position on its tripod was slightly higher than the centre of the shaker head, the shaker 

head was rotated slightly to keep the vibrometer perpendicular to the plate being tested. 

3.1.2 C-C-C-C ALUMINIUM ALLOY PLATE SHAKER EXPERIME 

Clamped aluminium alloy 7075-T6 flat plates were tested. The undamped size was 254 x 

203 x 1.30 mm which results in a 1.25 aspect ratio (length divided by width). Strain gauges were 

bonded back-to-back, shown in Fig 3.3, to measure total, axial and bending strains using the same 

methods as those used for the beam experiments. Edge strain gauges 2 and 7 were positioned to 

obtain the maximum strain response for the first mode. Edge gauges 1 and 6 were positioned to 

obtain for the third mode response. Displacements were measured with a scanning laser 

vibrometer as discussed in Chapter n. An accelerometer was mounted on the shaker head to 

determine the acceleration of the fixture. The plate testing arrangement is shown in Fig 3.4. The 

figure shows the set-up including the excitation system, response measuring instruments, 

monitoring equipment and data acquisition system. The same data acquisition and processing 
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methods used for the beam experiments, described in Chapter II, were used in the plate 

experiments. 

3.1.2.1 LINEAR MODE SHAPES 

The linear modal frequencies of the plate used in the shaker experiments were measured using 

low level excitation. The plate was excited sinusoidally in its clamping frame with an acoustic 

driver (loud speaker). With the plate bolted to the clamping fixture and lying on a vibration 

isolated block, mode shapes were measured using a scanning laser vibrometer. The vibrometer is 

previously described in more detail in section also 2.1.1.1.  Low level excitation (below 90 dB 

overall SPL) was used to avoid nonlinear response. Additional mode shapes were determined 

using a video hologaphy method, described in section 2.1.1.1. Both methods yielded frequencies 

with a 1 Hz accuracy for the fundamental mode. Using the video holography method, the 

fundamental mode occured at 208 Hz. The seven measured mode shapes are shown in Fig 3.5. 

The frequencies are listed in Table 3.1. All the mode shapes up to the 4:1 mode were found in 

the 208-966 Hz frequency range. The 3:1 (617.6 Hz) and the 2:2 (623 Hz) modes are 5 Hz apart. 

This closeness is an indication that it would be difficult to determine which mode is contributing 

energy to the strain spectral density. 

3.1.2.2 NONLINEAR ALUMINIUM ALLOY SINUSOIDAL SHAKER EXPERIMENTS 

With the plate and fixture bolted to the shaker head, sine dwell tests were conducted near the 

fundamental resonant frequencies. The dwell tests were similar to those conducted for the beam 

described in Chapter II. The nonlinear displacement shapes were measured using a scanning laser 

vibrometer. The frequency range for the tests was selected by sweeping slowly from below the 

fundamental frequency to a frequency just below where the amplitude jumped down to a low 

level. The excitation was reduced in 0.1 Hz increments until stability was achieved. Four 

excitation levels, selected near the jump down frequency were used in measuring the 

displacement at the centre and the total strains.  The jump phenomenon occured when the 

fundamental frequency increased from 228.9 to 245.9 Hz, shown in Fig 3.6. This is indicative of 

a hardening spring type cubic nonlinearity. Displacement amplitudes of more than three plate 
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thicknesses are shown in the figure. The shape of strain and displacement relationships are quite 

similar, nonlinear at the higher excitation levels. The nonlinear displacement shapes (raw data) for 

the fundamental resonant responses are shown in Figs 3.7 and 3.8. The zero position is the centre 

of the plate. The displacement amplitude increases with increasing sinusoidal excitation. The 

edges of the plate near the clamping fixture show large curvature due to the high bending 

moments at the clamp. This curvature reverses as expected around the centre region of the plate. 

Large curvature is observed around the centre region of the plate. The maximum displacement 

measured near the clamps is 0.01 mm peak and is due to the shaker head motion and the clamping 

frame. 

3.1.2.3    NONLINEAR ALUMINIUM ALLOY RANDOM EXPERIMENTS 

Random response tests were conducted with a spectrum controller programmed for a flat 

spectrum shape from 100-1000 Hz. Examples of the excitation spectral densities are shown in 

Fig 3.9. This frequency band includes the 1:1 to 3:2 modes. Examples of the total strain spectral 

densities for gauges 1 to 5 are shown in Figs 3.10 to Fig 3.14. No appreciable differences are 

found comparing the front gauges (SG 1 to 5) with the back gauges (SG 6 to 10). The highest 

strain measured is along the clamped edge at the centre of the longer side of the plate near the 

clamping frame, strain gauge location 2. Large strain responses occurred around 220, 670 and 

900 Hz with peak broadening and shifting to higher frequencies at the highest excitation level. 

This is indicative of geometrical nonlinearities described in more detail in section 2.2.4. Two 

peaks are apparent around 670 Hz at low levels of excitation that combine at high levels of 

excitation. The displacement spectral densities, shown in Fig 3.15, are quite similar to the strain 

spectral densities except for the relative amplitudes of the higher order modes. 

Comparisons of the total, axial and bending strain spectral densities for gauge location 2 for 

the lowest (1.46 g) and the highest (14.4 g) excitation levels are shown in Figs 3.16 and 3.17. 

The axial overall rms strain is 4.56% of the total strain at the highest level of excitation. High 

strain responses occur first around 220-235 Hz, then 900-915 Hz, 635-660 Hz and 430-510 Hz. 

Peak broadening and frequency shifting to higher frequencies are evident. The axial or in-plane 

stretching effect occurs at twice the bending resonant frequencies. Over most of the frequency 
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band the bending and total strain spectral densities arc about equal. The fundamental axial 

frequency is 440 Hz and the subharmonic is 220 Hz. The axial strain peak at 220 Hz is much 

lower than the bending peak. The axial strain response is higher than the bending strain around 

460 Hz at the higher level of excitation. This results in a higher total strain response around the 

axial fundamental resonance, at twice the bending fundamental resonance. 

The total strain overall levels for the five strain gauge locations and the displacements at the 

centre of the plate are shown in Fig 3.18. At the maximum excitation level (14.4 g), the highest 

total strain recorded is 425 microstrain rms at gauge location 2 followed by 282 microstrain at 

gauge location 5, then 240 microstrain at gauge location 3,198 microstrain at gauge location 4 

and 138 microstrain at gauge location 1. The shape of the displacement curve closely follows that 

of the total strain curve for strain location 2. The shape of the total strain curve seems to follow 

the characteristics of a parabola. The relationship between total strain and displacement is shown 

in Fig 3.19. This relationship is nonlinear even at small displacements. The axial strain overall 

levels for five gauge locations and the displacement at the centre of the plate are shown in Fig 

3.20. As the excitation levels increase, the axial strain increases at a slightly higher rate than the 

excitation level. The bending overall strain levels are shown in Fig 3.21. These are quite similar 

to the total strain curves. The total, bending and axial overall strain levels for three gauge 

locations are shown in Figs 3.22,3.23 and 3.24. The highest strain is measured at strain location 

2, the centre of the length of the plate near the clamp. All three locations exhibit characteristics 

described in the four previous figures. The shape of the bending curve closely follows that of the 

displacement curve. The total strain is nearly equal to the sum of the axial and the bending strain. 

An estimate of the individual resonance contributions to the total strain energy can be 

determined by integrating across the strain spectral densities and normalising by dividing by the 

overall level. Examples of integrating across four strain spectral densities for the gauge at 

location 2 are shown in Fig 3.25. The first resonance contributes approximately 82% of the total 

strain at the lowest level of excitation (1.46 g). As the level of excitation is increased, the first 

resonance contribution decreases from 82% to 76%.  At the highest level of excitation (14.4 g), 

the higher order frequency peaks in the strain spectral densities contribute more significantly to 
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the overall strain response. Peak broadening at the highest level is evident from the shape of the 

curves. 

The excitation force amplitude probability density functions (APDFs) were determined by 

incorporating the mean values in the PDF. This results in the 'x' axis of force divided by the 

standard deviation. This method is used for all the force and strain plate APDFs except for the 

microphone APDFs used in the APWT tests. 

The acceleration AFDFs, shown in Fig 3.26, are compared with the Gaussian function. The 

shaker controller was programmed for ± 4 sigma, however, the shaker did not produce 4 sigma 

amplitudes. Theoretically, the APDFs should be Gaussian, however, some differences are 

noted. The APDFs for the highest excitation level approach zero near +2.5 sigma and -2.9 sigma. 

The lowest level APDFs approach zero at +2.5 sigma and -3.2 sigma. The strain APDFs for four 

different excitation levels are shown in Fig 3.27. The APDFs for the highest excitation level 

approach zero near +3.2 sigma and -2.8 sigma. The low level APDFs are more symmetric and 

approach zero at +2.7 sigma and -2.7 sigma. More large positive amplitudes occur than large 

negative amplitudes especially at the higher excitation levels. This is an indication that the beam 

response becomes more nonlinear at higher excitation levels. Very high sigma values, above 4 

sigma, may not be observed if the time history is too short. Most of the tests conducted used a 12 

second time history. Some tests used a 25 second time history which permits investigations of 

large sigma values. A comparison of the APDFs for SG 2 at the highest excitation level is shown 

in Fig 3.28. No appreciable difference is observed comparing the 12 second time history with the 

25 second the history. The 3.2 sigma value is the highest amplitude response observed. 

3.1.3    C-C-C-C CFRP PLATE SHAKER EXPERIMENTS 

The CFRP plate was fabricated using Hercules AS4 /3501-6 unidirectional prepreg tape with 

AS4 fibres in a 3501-6 matrix (0° /±45° /90°)s. The fibre volume fraction was 58.7%. The 

undamped size of the plate in the fixture was 254 x 203 x 1.09 mm which resulted in an aspect 
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ratio of 1.25. The test arrangement and strain gauge locations are the same as those used for the 

aluminium alloy shaker plate in section 3.1.2. 

3.1.3.1    LINEAR MODE SHAPES 

The linear modal frequencies of the composite plate used in the shaker tests were measured 

using low level excitation. Mode shapes were measured using the video hologhaphy method 

described in section 3.1.2.1 for the aluminium alloy plate test arrangement. The fundamental 

mode occurred at 156 Hz. The mode shapes measured are shown in Figs 3.29 and 3.30 and Table 

3.1. The frequency range is 156 to 1110 Hz. The density and stiffness of the composite material 

are different from that of aluminium alloy producing different frequencies. The anisotropic 

properties of CFRP, as well as the thermal expansion problems, make it difficult to find well 

defined mode shapes. In addition, there are thermal expansion problems. More modes were 

found but they were lacking definition and symmetry. The same care in testing was used in both 

cases, such as torquing the bolts in she clamping frame, but more tests were required to obtain 

reasonable results. An increase in temperature of 1.11° C (2° F) resulted in a 16 Hz increase in 

the fundamental modal frequency. This was due to expansion of the aluminium alloy clamping 

frame which was much greater than that of the CFRP plate. 

3.1.3.2     NONLINEAR CFRP SHAKER SINUSOIDAL EXPERIMENTS 

Sine dwell tests were conducted near the fundamental resonanant frequencies. The test 

procedures were identical to the aluminium alloy plate tests described in section 3.1.2.2. 

The jump phenomenon occurs when the fundamental frequency increases from 147.5 Hz to 188.7 

Hz, shown in Fig 3.31. This is indicative of a hardening spring type cubic nonlinearity. 

Displacement amplitudes of slightly more than five plate thicknesses are shown in the figure. The 

shape of strain and displacement relationships are quite similar to those of the aluminium alloy 

plate, being nonlinear at the higher excitation levels. The nonlinear displacement shapes (raw 

data) for the fundamental resonant responses are shown in Figs 3.32 and 3.33. The zero position 

is located at the centre of the plate. The V direction corresponds to the width (shorter 
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dimension) of the plate and the 'y' direction corresponds to the length (longer dimension) of the 

plate. The displacement amplitude increases with increasing sinusoidal excitation. The edges of 

the plate near the clamping fixture show large curvature due to the high bending moments at the 

clamp. This curvature reverses as expected around the centre region of the plate. Large 

curvature is observed around the centre region of the plate. The maximum displacement 

measured near the clamps is 0.06 mm peak and is due to the shaker head motion and the clamping 

frame. 

3.1.3.3    NONLINEAR CFRP SHAKER RANDOM EXPERIMENTS 

Examples of the excitation spectral densities for the CFRP plate are shown in Fig 3.34. The 

frequency band included the 1:1 to the 2:3 modes. Examples of the total strain response spectra 

are shown in Figs 3.35 to 3.38 for gauge locations 1, 3,4 and 7.  Large strain responses occurred 

around 155, then 310,475, 810,940 and 1140 Hz with peak broadening and shifting to higher 

frequencies which is indicative of geometrical cubic nonlinearities.  Many more peaks were 

found in the CFRP plate tests than those found in the aluminium alloy plate tests over the same 

frequency range. The displacement spectral densities, shown in Fig 3.39, are similar to the strain 

spectral densities except for the relative amplitudes of the higher order modes. 

Comparisons of the axial and bending strains for location 2 for the lowest (1.45 g) and the 

highest excitation levels (14.4 g) are shown in Figs 3.40 and 3.41. The axial overall rms strain is 

7.47% of the total strain at the highest level of excitation. This is almost twice that of the 

aluminium alloy plate tests. The larger axial strain responses occur around 160 and 340 Hz for 

the low level test. The fundamental axial strain response (320 Hz) occurs near the 3:1 mode. For 

the high level tests, the bending strain responses occur first around 170-200 Hz, then   940-1000 

Hz and 350-680 Hz. Peak broadening and frequency shifting to higher frequencies are evident 

and more so than with the aluminium alloy shaker plate. 

The total strain overall levels for five strain gauge locations and displacements at the centre of 

the plate are shown in Fig 3.42. At the maximum excitation level (14.4 g rms), the highest total 

strain measurement is 394 microstrain rms overall at location 10, followed by 352 microstrain at 
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location 2, 227 microstrain at location 3,205 microstrain at location 1 and 169 microstrain at 

location 4. The shape of the displacement curve closely follows the total strain curve for strain 

location 2. The shape of the total strain curve seems to follow the characteristics of a parabola. 

The relationship between total strain and displacement is shown in Fig 3.43. This relationship, as 

in the case of the aluminium alloy plate, is nonlinear at small displacements. The axial overall 

strain levels for five gauge locations and displacements at the centre of the plate are shown in Fig 

3.44. As the excitation levels increase, the axial strain increases at a slightly higher rate than the 

excitation level. The bending overall strain levels are shown in Fig 3.45. These are quite similar 

to the total strain curves. The total, bending and axial overall strain levels for three gauge 

locations are shown in Figs 3.46, 3.47 and 3.48. The highest strain is measured at strain location 

2, the centre of the length of the plate near the clamp. The shape of the bending curve closely 

follows that of the displacement curve. All four of the previous figures are very similar to those 

of the aluminium alloy plate tests. 

An example of integrating across the strain spectral densities and normalising for strain 

location 7 is shown in Fig 3.49. Note that gauges 2 and 7 were positioned at the same location 

and installed back-to-back. Strain at location 7 was used in this case because the gauge at location 

2 was not functioning. The first resonance contributes approximately 96% of the overall strain at 

the lowest level of excitation (1.45 g). As the excitation level increases, the first resonance 

contribution is less, from approximately 96% to 90%. At the highest level of excitation (14.4 g), 

the higher order frequency peaks in the strain spectral densities contribute more significantly to 

the overall strain. Peak broadening at the higher level is evident from the shape of the curves. 

The acceleration amplitude probability density functions (APDFs) for four different excitation 

levels are shown in Fig 3.50. The APDFs for the highest excitation level approach zero near +2.5 

sigma and -2.9 sigma. The lowest level APDFs approach zero at +2.5 sigma and -3.2 sigma. 

This result is identical to those from the aluminium alloy shaker plate tests, which is expected. 

However, slightly more scatter in the data is observed. The strain APDFs for four different 

excitation levels are shown in Fig 3.51. The APDFs for the highest excitation level approaches 

zero near +3.2 sigma and -2.8 sigma. The low level PDFs approach zero at +2.7 sigma and -3.2 

sigma. More large positive amplitudes occur than large negative amplitudes at the higher 
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excitation levels. This is an indication that the plate response becomes more nonlinear at higher 

excitation levels. The high strain level contains smaller negative amplitudes. The strain APDFs 

are similar to those from the aluminium alloy shaker plate tests, but more scatter is observed. 

Also, the CFRP APDFs are more non-Gaussian than the aluminium alloy shaker plate APDFs. 

3.2    APWT PLATE EXPERIMENTAL METHODS 

3.2.1    INTRODUCTION 

Acoustic progressive wave tubes (APWT) provide a convenient method of exciting 

plates to extremely high levels of excitation, similar to sound fields produced by high 

performance aircraft. Kinsler [158] describes a plane wave as a wavefront where all the 

acoustic variables are functions of one spatial coordinate. The phase of any variable is 

constant on any plane perpendicular to this coordinate. 

Beranek [159] describes a one dimensional, plane free progressive wave produced by the 

motion of a piston vibrating in one end of a rigid tube of infinite length or a finite tube with 

a nonreflecting termination. Anechoic termination is practical since it absorbs most of the 

acoustic power before it is exhausted to the outside environment. The sound wave produced 

by the motion of a piston merely progresses down the tube with no backward travelling 

wave. The wavelengths should be larger than the duct cross-sectional dimensions to prevent 

standing waves from forming across the duct. The duct should have rigid walls to prevent 

resonance response of the duct from altering the plane progressive wave and to prevent the 

loss of acoustic power as the wave progresses down the duct. The relationship of sound 

power level (PWL), sound pressure level (SPL) at standard temperature and at sea level and 

the cross-sectional area (A) of the duct can be expressed as 

SPL = PWL - 10 log (A/A0) + 0.5    (dB) (3.1) 
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where PWL= 10 log10 -^—     (dB), Wref  = 10 13   watts (3.2) 
W. ref 

-2 
and SPL=10log10 _      _       (dB), pref  = 20p.Pa (3.3) 

Pref 

A is the surface area in square feet through which the sound power is radiated. A0is the 

2 2 
reference area which was selected as 645 mm (1 ft). The reference sound power level used 

here was chosen so that the SPL ~ PWL when the area of the surface being considered was 

one square foot. It should be noted that the reference SPL used throughout these studies was 

20p.Pa. 

In practice, a noise generator provides the acoustic power through a coupling horn to a 

test duct with anechoic termination. From Eq (3.1) for a given PWL, the SPL level 

decreases as the cross-sectional area of the duct increases. To obtain higher sound pressure 

levels for a given noise generator system, smaller cross-sectional area ducts are needed. The 

cross-sectional area of the duct should be larger than the area of the plate to prevent the duct 

from reducing the response of the plate through acoustic radiation damping. It is important 

to reduce discontinuities or steps in the walls of the duct to prevent generating reflecting 

waves which contaminate the wave front. Discontinuities result in sudden changes in 

impedance which reduce the power transmitted. The APWT produces grazing incidence 

excitation of panels installed in the side walls of the duct assuming plane progressive wave 

propagation. 

The major advantage of this test method is that it closely simulates many of the excitation 

environments experienced in aircraft operations. The major disadvantages are the cost of 

manufacturing the system (capital investment) and the cost of operation including the air 

supply requirements. 
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Exact descriptions of the acoustic field and its forcing function on the plate installed in an 

APWT are controversial and difficult to produce with existing methods. It is complicated by 

the existence of standing waves and the determination of correlation lengths. Also, the 

determination of the amount of the force that the plate actually receives is not known for the 

nonlinear case. For the linear case, the joint acceptance theory is useful. Allen [160] studied 

methods of obtaining 180 dB in a large APWT and described nonlinear acoustic propagation 

effects. This is important in choosing the form of the input spectrum to a noise generator. 

Clipping the input spectrum will change the amplitude probability density function at the 

source. However, at the test plate location in the duct, the pressure amplitude probability 

density function remains nearly Gaussian as described in further detail in the next 

paragraphs. 

A sound wave is a longitudinal wave in which the particles of air move forward as a 

pressure portion of the wave passes and move backward as the rarefied portion of the wave 

passes. Thus, although the particles of the air remain centered at their individual undisturbed 

positions as a train of waves passes, their movement involves an oscillating particle velocity 

in phase with the sound pressure as it oscillates above and below the ambient pressure. 

Since the pressure and the particle velocity in a free progressive wave are in phase, the 

pressure portion of the wave propagates at the normal speed of sound plus a small amount 

due to the added particle velocity; the rarefied portion propagates at the speed of sound 

minus the particle velocity. Thus a sound wave, whatever its shape as it is generated, distorts 

and the pressure portions continually advance relative to the rarefied portions. Because the 

wave pressure changes are adiabatic (meaning that the heat of compression is conserved in 

the pressure zone and raises the temperature there) causing the local speed of sound to 

increase and conversely for the rarefied portion. This effect adds to the rate of that 

advancement of the pressure portion. 

It is apparent that as the wave propagates, the pressurized portions continually travel 

faster than the rarefied portions of the wave while the uncompressed, intermediate portions 
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(that remain at atmospheric pressure and temperature) travel at the normal speed of sound. 

This becomes easily observable at levels of 160 dB and higher. 

High intensity waves, such as those associated with jet engines and rockets, distort so 

rapidly they may form shock fronts in a distance of a few wave lengths. Actually, the most 

intense wave trains that the ambient atmosphere can carry may develop shock fronts within a 

fraction of one wave length from the source. 

Studying various wave forms led to the following conclusions. The most efficient sound 

generation by an air flow modulator (whether it be with a reciprocating valve or a siren) is 

accomplished by producing a substantially square wave form. Such a wave can approach 

100% efficiency in utilizing the available energy from the air stream. A sine wave 

generator, on the other hand, can approach only 50% efficiency because energy is lost in the 

partially open phases of the valving process. A sawtooth wave generator is limited to even 

lower theoretical efficiency. Actual attainable efficiencies are much less; half the theoretical 

value is generally considered a good practical output. Any wave form generated at the 

source will become a sawtooth wave at some distance from the source. It will be composed 

of the fundamental frequency and all of its harmonics (odd and even). 

This leads directly to the recommendation to put aside any attempts to simulate at the source, 

the spectrum required at the test panel Instead, use an efficient generator of a high level low 

frequency wave train. Such a wave train, during its travel, will create the broad spectrum of 

high level sounds needed for the required fatigue testing. 

3.2.2     C-C-C-C ALUMINIUM ALLOY PLATE APWT EXPERIMENTS 

Two heavy mild steel clamping plates bolted together with rectangular holes cut in the 

centre were used to clamp the aluminium alloy plate. The openings in the plates were 450 x 

300 mm. The frame on the sound side of the test plate was 18mm thick. The other frame 

was 15 mm thick. This produced an 18 mm step in the APWT cross-section at the test plate 

location which affects the sound field. Since this is only a 6% increase in the width of the 
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duct (305 mm), the effects are small. The test plate was 450 x 300 x 1.22 mm L71 18 SWG 

aluminium alloy. 

The aluminium alloy plate and steel frame were heated from 23°C to 37°C before torquing 

the bolts clamping the plate to the frame. This provided a light tension (50 microstrain) to 

the panel as long as the environment did not exceed 37°C. There was sufficient hole 

clearance space to prevent the panel from buckling when heated. The panel frame was 

suspended by two chains in the plywood opening in the side of the duct. This plate 

installation is shown in Fig 3.52. The APWT, located at ISVR, was rectangular in cross- 

section, 610 x 305 mm (1 x 2 ft), with a 30 KW Wyle WAS 3000 air modulator. For full 

acoustic power 3000 scfm at 25 psig is required. The plate was instrumented with 10 strain 

gauges. Pairs of strain gauges were mounted back-to-back, shown in Fig 3.53, similar to the 

shaker plate arrangement. The plate test arrangement, the instrumentation and the data 

acquisition and monitoring equipment are shown in Fig 3.54. Since no signal clipper was 

available, peaks up to ±5o were used to drive the air modulator valve, which provides a 

nearly Gaussian APDF in the drive signal. At the plate location the pressure APDF was also 

nearly Gaussian. The disadvantage of this method is that it results in a much lower sound 

pressure level limit in the test duct. 

The spectrometer produced outputs between 0 and 100 volts, whereas, the PC data 

acquisition system was limited to 1 volt. A voltage reducer was used to keep the voltages in 

the required ranges. The microphones were orientated for grazing incidence and calibrated 

with a pistonphone. Strain bridge amplifiers were balanced before each testing sequence. 

The same procedure was used to measure total, bending and axial strains. The overall sound 

pressure levels used were 140,146,152 and 158 dB. From Eq (3.3), each 6 dB represents a 

doubling of sound pressure. 

The air modulator random signal was shaped by a 1/3 octave spectrum shaper from 100- 

630 Hz to yield a relatively flat pressure spectral density at the microphone opposite the 

plate, M 2. With this shape, equal energy is available over the desired frequency range. The 

microphone was located at the centre of the plate and midway across the duct. Microphone 3 
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was upstream from the panel at the edge of the side wall and Microphone 4 was downstream 

from the panel at the edge of the side wall. Example spectra from these three microphones 

are shown in Fig 3.55. Differences occur in the spectrum levels due to many factors. The 

standing waves in the duct, due to parallel walls, have wavelengths in the frequency band of 

interest. The panel response interacts with the plane waves travelling down the duct. 

Frequencies higher than the 630 Hz input are contained in the measurements. As discussed 

in the introduction, section 3.2, this is due to the nonlinear propagation effects or the finite 

amplitude effects. 

Only three strain gauges survived the highest level of excitation. These were two centre 

gauges and an edge gauge located on the shorter side of the plate. Since the overall SPLs 

(OSPLs) are logarithmic, they were changed to pressures, as shown in Fig 3.56, to examine 

nonlinearity of the overall levels. As the excitation levels increased the total strains increased 

linearly up to 600 Pa as well as the displacements. Most of the measurements were limited to 158 

dB (1620 Pa) and below to prevent damage to the strain gauges and to remain in the elastic region 

of the material. The SPL is not high enough for this size of plate to be in the nonlinear range of 

excitation. Some similarities between the plate response strain time history characteristics 

and the C-C beam case with random excitation are noted. The plate time histories are more 

complex. A composite plot of the strain spectral densities obtained for an edge strain gauge 

location is shown in Fig 3.57. The results are similar to those obtained from the C-C beam. 

However, the peak broadening effect is greater than in the beam case and more resonances 

are exhibited as expected for a plate. 

The total, bending and axial strain spectral densities for a centre gauge location with a 

low level of acoustic random excitation are shown in Fig 3.58. At this location the response 

amplitude of the third resonance is higher than that of the fundamental. The bending strain 

spectrum levels are generally a little lower than those for the total strain. The peaks in the 

axial strain spectrum are higher at the fundamental frequency. The total, bending and axial 

strain spectral densities for a centre gauge location with the highest level of excitation are 

shown in Fig 3.59. The axial strain spectrum levels are much lower than those for the 

bending strain. Peak broadening and shifting to higher frequencies are noted. 
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An example of integrating across the spectral densities and normalising for a low and a 

high level centre strain gauge location (SG 9) is shown in Fig 3.60. The first resonance 

contributes approximately 5% of the overall strain at the lowest level of excitation, 140 dB OSPL. 

The first and the second peaks contribute 90%. At the higher excitation level, 158 dB OSPL, the 

first and second resonance contribution is less, approximately 74%. Higher order resonances 

contribute more to the total energy. Peak broadening at the higher level is evident from the 

shape of the curves. The first resonant peak of the response is much lower than the second 

resonance. Near the clamp, strain location 10, the first resonance is the highest contribution. 

The pressure APDFs for microphone 2 (across from the test plate) at four different OSPLs are 

shown in Fig 3.61 and compared with the Gaussian function. The air modulator controller signal 

was amplified from the random signal generator without a clipper. The APDFs for most 

excitation levels approach zero near +3.5 sigma and -3.5 sigma.  The APDFs between -2 and +2 

sigma deviate from the Gaussian function. The lower the OSPL, the greater is the deviation. The 

three microphone locations (across from the plate, upstream and downstream of the plate) are 

examined as shown in Fig 3.62 for the 158 dB OSPL tests. All three microphone APDFs are 

similar. The strain APDFs for SG 10 (near the clamp) at four different OSPLs are shown in Fig 

3.63. The APDF for the 146 dB OSPL test is more symmetric and near zero at ± 3.5 sigma, 

nearly Gaussian.  The APDFs are shifted to the negative side at the other OSPLs. The offset does 

not increase as the OSPL increases, which is puzzling. More large positive amplitudes should 

occur than large negative amplitudes especially at the higher excitation levels, which is an 

indication that the plate response becomes more nonlinear at higher excitation levels. The 

negative APDF results could be due to an inverted sign of the signal in the signal processing. For 

example, some digital filters invert the sign of the signals. However, the time histories do not 

show large negative mean values, but do show positive mean values. With the exception of the 

146 dB data, a shift toward the positive amplitudes is noted as the excitation level increases. The 

strain APDFs for SG 9 (centre location) for the 140 dB and 158 dB OSPLs are shown in Fig 3.64. 

The APDF for the high, OSPL approaches zero near +3.3 sigma and -3.1 sigma. The APDF for 

the low OSPL approaches zero near +2.8 sigma and -3.9 sigma. 
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3.2.3    C-C-C-C CFRP PLATE APWT EXPERIMENTS 

The CFRP plate was fabricated using Hercules AS4 /3501-6 unidirectional prepreg tape with 

AS4 fibres in a 3501-6 matrix (0° / ±45° / 90°) s. The size of the panel, clamping frame and 

strain gauge locations are shown in Fig 3.65. The undamped size of the plate in the fixture was 

514 x 387 x 1.09 mm which results in an aspect ratio of 1.33. The plate was attached to the 

heavy mild steel clamping frame using screws and flat stainless steel washers. Thin CFRP 

strips were inserted underneath the washers. This arrangement was used to reduce the effects 

of a thick clamping plate inside the APWT from affecting the acoustic plane wave 

progression across the panel. Since the first attempts resulted in extruding the washers into 

the holes in the plate, larger clamping washers were used as shown in Fig 3.66. No 

pretension was applied to the plate since this method was useful in preventing buckling due 

to the clamping arrangement. 

3.2.3.1 LINEAR MODE SHAPES 

The modal frequencies of the composite plate used in the APWT experiments were 

determined from low level tests. The plate, in its clamping frame suspended on bungy cords, was 

excited sinusoidally with an acoustic driver, as shown in Fig 3.67. The fundamental mode at 59 

Hz along with higher order modes are shown in Figs 3.68 and 3.69. The higher order modes are 

listed in Table 3.1. The range of frequencies covered was 59 to 405 Hz which includes modes up 

to 5:3. The 1:2,2:3 and 3:3 modes were not found. 

3.2.3.2 CFRP APWT NONLINEAR RANDOM EXPERIMENTS 

The CFRP APWT nonlinear random experiments were performed using an APWT at the 

Wright Laboratory. The plate was instrumented with 10 strain gauges. Pairs of strain 

gauges were mounted back-to-back similar to the shaker plate and the aluminium alloy 

APWT test arrangement. The plate was suspended in the side wall of an APWT of rectangular 

cross-section 1219 x 304.8 mm (4 x 1 ft) shown in Fig 3.70. Two 30 KW Wyle WAS 3000 air 

modulators were used. The test rig was actually designed for two test panels. The panel of 
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interest was located further downstream from the air modulators than the other panel. The plate 

test arrangement, the instrumentation and the data acquisition and monitoring equipment are 

shown in Fig 3.71 . The random input signal to the air modulators was clipped at a crest 

factor of 1.4. Random acoustic excitation was utilized with a relatively flat spectrum level from 

50-500 Hz at five levels. The microphones were AC coupled. Examples of spectra from two 

microphone locations are shown in Figs 3.72 and 3.73. Microphone 3 (M 3) was upstream of the 

panel and microphone 5 (M 5) was located in the wall of the duct across from the panel. 

Microphone 3 was utilized to shape the spectrum. A relatively flat spectrum level, with some 

peaks, was obtained with M 3. Larger peaks are observed around 400 and 450 Hz, possibly do to 

standing waves in the duct. The peaks change considerably in the spectrum levels for M 5. A 

slight increase in the spectrum levels is observed for M 5 in the range of 50-500 Hz. 

Examples of the total strain spectral densities for gauges 2 and 3 are shown in Figs 3.74 and 

3.75. The peaks for the fundamental response are much higher than the higher order responses for 

the strain near the clamp (SG 2). The peaks at 100 and 340 Hz at the centre of the plate (SG 3) 

are nearly equal for the 152 dB OSPL test. The highest strain is along the clamped edge at the 

centre of the longer side of the plate. Peak broadening and shifting to higher frequencies are 

noted. Many more resonant responses occur than for the aluminium alloy APWT plate tests. The 

axial strain response spectra are shown in Fig 3.76. The highest peak is at approximately 320 Hz. 

As the excitation levels increase the response becomes broadband and nearly flat from 50-1000 

Hz. Comparisons of the total, axial and bending strain spectral densities for strain gauge 3 for the 

lowest and the highest excitation levels are shown in Figs 3.77 and 3.78. For the low level tests 

(134 dB OSPL) many narrow band peaks occur with the highest at 59 Hz. Note, this is not 

electronic noise since the band widths are much broader. The fundamental bending mode 

occured at 59 Hz. The axial fundamental strain component occured at 118 Hz with a 

subharmonic at 59 Hz. No higher order harmonics appear above the noise floor. For the high 

level tests, the axial strains are broadband and nearly flat from 50-1000 Hz. The total and 

bending strains contain four distinct peaks at 100,325,740, and 900 Hz. An example of the 

displacement spectral densities is shown in Fig 3.79. The displacements include the clamping 

frame motion since the frame was vibration isolated from the test duct. At 162 dB OSPL, 

considerable frame displacement was measured, 3.8 mm peak overall compared with 4.4 mm 
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peak overall at the centre of the plate. The fundamental resonance occured at 100 Hz for the 152 

dB OSPL tests. Similar characteristics as those from the strain responses are noted. However, the 

higher order peaks are much smaller in amplitude. Peak broadening and frequency shifting are 

evident. 

The total strain overall levels for seven strain gauge locations and the displacement at the 

centre of the plate are shown in Fig 3.80. The highest total strain measured is 578 microstrain at 

strain gauge location 2 at 156 dB overall SPL. The displacements increase as the excitation levels 

increase. Since the OSPLs are logarithmic, they were changed to pressures, shown in Fig 3.81, to 

examine nonlinearity of the overall levels. As the excitation levels increase the total strains 

increase linearly up to 600 Pa as well as the displacements. Most of the measurements were 

limited to 152 dB (840 Pa) and below to prevent damage to the strain gauges and to remain in the 

elastic region of the material. Higher levels, up to 162 dB OSPL (2234 Pa), were selected to 

obtain a failure point for the plate, but after 8 hours, the test was terminated with no visible signs 

of fatigue failure. The displacements are clearly nonlinear at the 162 dB level. The axial strain 

overall levels for three gauge locations are shown in Fig 3.82. All three are practically the same. 

Comparisons of the total, axial and bending overall strain levels are shown in Fig 3.83. The axial 

strain was approximately 10.8% of the total strain at 151 dB OSPL. The total and bending strains 

are nearly equal with curvature similar to the displacement curve. 

Examples of integrating across the five strain spectral densities (total strain) for the gauge at 

location 2 are shown in Fig 3.84. The first resonance contributes approximately 35% of the total 

strain at the lowest level of excitation. At the highest level of excitation, the first resonance 

contribution increases slighdy to approximately 50%. Examples of integrating across five strain 

spectral densities for the gauge at location 3 are shown in Fig 3.85. The first resonance 

contributes approximately 50% of the total strain at the lowest level of excitation. At the highest 

level of excitation, the first resonance contribution decreases to approximately 30%. The 

integrals of the axial strain spectral densities for gauge location 3 are shown in Fig 3.86. 

Vibration resonances are not distinguishable. The lowest level response is fairly well distributed 

over the 0-2000 Hz frequency range, whereas, the highest level is spread over the 0-1000 Hz 

range. At the higher level of excitation, the higher order frequency peaks in the strain spectral 

66 



CHAPTER III 

densities contribute more to the overall strain than the first resonant response. Peak broadening at 

the higher level is evident from the shape of the curves. These results are quite different than 

those from the aluminium alloy APWT tests where three distinct peaks were observed. 

The pressure APDFs for microphone 3 (across the duct from the test plate) at five different 

OSPLs are shown in Fig 3.87 and compared with the Gaussian function. The air modulator 

controller was programmed to clip the random signals at approximately + 2 sigma (crest factor 

=1.4). However, the amplitudes produced downstream of the air modulator contain much higher 

sigma amplitudes due to the finite amplitude effects in the propagation waves. The APDFs for 

most excitation levels approach zero near +3 sigma and -3.2 sigma, slightly skewed. The strain 

APDFs for five different OSPLs are shown in Fig 3.88. The low level APDF is more 

symmetrical near zero at ± 3.5 sigma, nearly Gaussian.  The APDFs are shifted to the negative 

side at higher OSPLs. The offset does not increase as the OSPL increases, which is more 

puzzling. More large positive amplitudes should occur than large negative amplitudes especially 

at the higher excitation levels, which is an indication that the plate response becomes more 

nonlinear at higher excitation levels. The negative APDF results could be due to inverting the 

sign of the signal in the signal processing. For example, some digital filters invert the sign of the 

signal. However, the time histories do not show large mean values at the lower OSPLs. 
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IV    EVALUATION OF EXPERIMENTAL RESULTS 

4.1     INTRODUCTION 

This chapter contains further evaluation of the experimental results. Comparisons are 

made of the two beams of different materials and two boundary conditions. Likewise, 

comparisons are made of the two clamped shaker flat plates and the APWT flat plates. A 

summary of the beam and plate sizes is given in Table 4.1. The sizes are of the undamped 

areas are listed. For the pinned tests, the distance between pins is listed. The material 

properties are shown in Table 4.2. The aluminium alloy properties are from a handbook. 

The carbon fibre material data were computed from the manufacturer's data sheets. 

Nonlinear effects due to mid plane stretching are studied here. Curve fitting of the 

nonlinear displacement shapes and their derivatives are investigated to determine the beam 

and plate strains for both the dynamic excitation tests and the static load tests. The nonlinear 

static displacements are compared with static bending theory. Comparisons of the bending, 

axial and total strains are made. Frequency response measurements are compared with linear 

theory. Comparisons are made of the normalised integrals across the strain spectral 

densities. The strain statistical moments are compared. 

42     STATIC BEAM TEST COMPARISONS 

The C-C aluminium alloy beam static test results show an offset, a shift of the neutral axis, 

towards the positive strain side due to the axial strains. Adding the axial strain to the bending 

strain equation (Eq 2.8) yields the total strain, 

lF^W2) + £ (41) 

El 
et = „        „ 
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where et is the total strain and ea is the axial strain. With a 10 N force, the measured strain is 

28 microstrain at the 1/4 I location. Substituting this into Eq (4.1) results in 361 microstrain and 

-305 microstrain, labelled theory 'B' in Fig 4.1. The figure shows an offset in the linear theory 

due to stretching, which also appears in the measurements. If the axial strains are subtracted from 

the total strains, then the tensile and compressive strains at the centre and near the clamp will be 

nearly equal in magnitude. For example, with a 10.4 N applied force, subtracting the axial strain 

at the centre location (282-30 = 252 microstrain) and subtracting it from the compressive strain 

near the clamp (-225-30 = -255 microstrain) results in near equality. The 1/4 £ location seems to 

be the location of zero bending strain and only axial strain is present 

The beam is much more stiff in axial loading than in transverse bending loading as shown in 

the following example. The C-C transverse static strain is given in Eq 2.7 and repeated here for 

comparison purposes, 

lFf(h/2) = 33 forF=10N, (4.2) 
8      El 

whereeb is the bending strain, F is the force, h is the thickness, E is Young's modulus, and I is 

the second moment of area of the cross-section. The axial strain is given by, 

F 
= 3.43U£, forF=10N, (4.3) 

Ew£ 

where £a is the axial strain and w is the width of the beam. The bending strain is 97 times 

of the axial strain for a 10 N static force. 

The stretching effect shifts the neutral axis. It also causes a reduction in the cross-sectional 

area which reduces the second moment of area. Linear theory assumes the second moment of 

area to be constant and does flQt_account for the reduction in the bending stiffness (El). The 

compressive strains are not as high in magnitude as the tensile strains due to the stretching effect. 
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Linear bending theory is accurate at very low force levels, but it does not describe the nonlinear 

behaviour at higher load levels. This behaviour includes a smaller displacement amplitude and 

strain level as the load increases and a shift in the neutral axis toward the compressive side of the 

beam. 

The C-C CFRP beam static test results are very similar to those for the aluminium alloy beam. 

The length, width and thickness of the CFRP beam are the same as the aluminium alloy beam, but 

the bending stiffness (El) is slightly smaller. This should slightly increase the strains for a given 

force level, but the results indicate that they are nearly equal. The stretching effect shifts the 

neutral axis. It also causes a reduction in the cross-sectional areas which reduces the second 

moment of area. 

The P-P aluminium alloy beam static test results have some different characteristics than those 

from the clamped beam tests. This is expected due to the change in boundary conditions. Larger 

deflections cause more stretching. Increasing the load level results in a smaller increase in the 

strain level. More hysteresis was observed in the strain measurements as the loads increase and 

decrease. 

If a mathematical function can be determined that accurately describes the nonlinear 

deflection shape, the nonlinear bending strain can be calculated at any point along the length of 

the beam. This can be determined by calculating the second derivatives of the functions discussed 

in this section. Bending and axial strains are defined by Timoshenko [33]. Curvature in beams is 

related to the bending strain by, 

h d2w (A A\ eb=-—r (4.4) 
2 dx 

and the axial strain by, 

,   =±|f±Ü.Vdx = ^ (4.5) 
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where eb is bending strain, ea axial strain, h is thickness and £ is the length of the beam. 

The static nonlinear displacement shapes are compared with functions used for dynamic 

mode shapes. The displacements for the lowest static force level (2.5 N) and the highest 

level (13.7 N) shown in Fig 2.15 are compared. A commercially available curve fitting PC 

computer program was used. The program rank orders mathematical functions in its library 

according to the best statistical fit. Up to two user defined functions can be included in the 

library of functions. One user defined function was added, the linear classical mode shape 

function, for comparison purposes. The linear classical mode shape function for the first 

mode of a clamped-clamped beam from reference [163 pi08] is 

,    ^"x ^x a,     •    ,.   ^x ^xx iA c\ cosh cos p(sinh — sin —)       (4.6) 
£ £ £ £ 

0   cosh X -  cos A, .. „. 
where p = — (4.7) 

sinh A. — sin A, 

and A, is the modal coefficient. The fundamental resonant displacement shape is studied. Eq 

(4.6) is multiplied by a constant 'A' to increase accuracy when the amplitudes are greater 

than one, 

,     A,X A-x a.      •     ,     ^x ^XM ,AO\ A[cosh cos p(smh — sin —)] (4.8) 
£ £        V £ £ 

Another approach is to normalise the length of the beam. Eq (4.8) is selected in order to 

evaluate the second derivatives by directly scaling the curvature plots. The form of the user 

defined function added to the library of functions is, 

y =  a{cosh(bx) - cos(bx) - c[sinh(bx) - sin(bx)] } (4.9) 

A partial listing of the functions and the ranking for the 2.5 N excitation force is shown in 

Appendix C, Table C-4.1. The table also shows a goodness of fit for each of the functions. 
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The complete list contains 203 functions. The highest ranking (1) is a logistic function, 

followed by a Gaussian function (2). The Lorentzian function is ranked third, the sine 

function seventh, the classical function fifteenth and the fourth order polynomial, twentieth. 

The goodness of fit ranges from 0.99589 to 0.99040 for the first to the twentieth, which is a 

small range. The curve fit test data for these six functions are shown in Figs 4.2 to 4.7. The 

curve fits are shown beyond the length of the beam (0-406 mm) to examine the shape of the 

functions beyond the finite boundaries. Generally, these six appear to be reasonable fits. 

The logistic, Gaussian, and Lorentzian functions fit the peak displacements better than the 

displacements near the clamp. Theoretically for clamped beams, the slope near the clamp 

should approach zero, however these functions asymptotically approach negative 

displacements rather than zero displacements. The other three functions overcome this 

problem but lose accuracy in fitting the peak displacement. 

A partial listing of the functions and the ranking for the 13.7 N excitation force is shown 

in Appendix C, Table C-4.2. The complete list contains 206 functions. The highest ranking 

is the Gaussian function (1), followed by the sine function (2), the logistic function (5), the 

classical function (6) the Lorentzian (7), and the fourth order polynomial function (13). The 

goodness of fit ranges from 0.99712 to 0.99537 for the first to the thirteenth, which is a 

smaller range than for the 2.5 N test data. The curve fit test data for these six functions are 

shown in Figs 4.8 to 4.13. Generally, these six appear to be reasonable fits. Similar features 

as those for the 2.5 N test data are found for the Gaussian, logistic, and Lorentzian functions. 

These three functions asymptotically approach negative displacements. The other three 

functions are lower at the highest amplitudes than the test data, more so than those for the 2.5 

N test. 

The second derivatives were calculated by the PC curve fitting computer program. The 

second derivatives of the logistic, Gaussian and Lorentzian functions for 2AM force have 

similar shapes over the length of the beam as shown in Figs 4.14 to 4.19 (the solid squares in 

the figures indicate the length of the beam). The strains calculated using Eq 4.1 at the centre 

of the beam are -34, -32, and -37 microstrain respectively, shown in Table 4.3. The 

measured strain (SG 4) is -70 microstrain. The low values calculated are due to the fitted 
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function falling below the measured displacements.   All three are meaningless since the 

curvature near the clamp is decreasing instead of increasing. Likewise, the second derivative 

of the sine function at the centre of the beam is -27 microstrain compared with the measured 

value of -70 microstrain (SG 4). The second derivative of the sine function at the clamp is 

26.9 microstrain compared with the measured value of 69 microstrain (SG 6). The second 

derivative of the classical function at the centre of the beam is -22 microstrain compared 

with the measured value of -70 microstrain (SG 4). The second derivative at the clamp is 

36.7 microstrain compared with the measured value of 69 microstrain (SG 6). The second 

derivative of the fourth order polynomial function at the centre of the beam is -20 

microstrain compared with the measured value of -70 microstrain (SG 4). The second 

derivative at the clamp is 42.3 microstrain compared with the measured value of 69 

microstrain (SG 6). Although the discrepancies using these last two functions are large, the 

shape of the curves follow the expected behaviour more closely. 

The second derivative functions for the 13.7 N force, shown in Fig 4.20 to 4.25, have 

similar shapes along the length of the beam as those for the 2.5 N tests. The second 

derivative of the fourth order polynomial function at the clamp is 211 microstrain compared 

with 326 microstrain measured with SG 6. This function is the best of the six evaluated as 

shown in Table 4.3. The second derivative of the classical function at the clamp is 200 

microstrain. The second derivatives for the remaining functions at the clamp are much 

smaller than the two preceding functions. 

The ranking of the functions for the 13.7 N force changed from that for 2.5 N force. This 

is due to the small changes in the goodness of fit which is less important than the curvature 

near the clamps and the centre of the beam. The ranking is based upon the whole 

displacement shape. The accuracy of the curve fit is very important to obtain acceptable 

second derivatives. 

A literature search for nonlinear static beam theory produced some articles of interest Wei- 

Zang and Kai-Yaun [161] studied the problem of a uniformly loaded static clamped rectangular 

plate under large deflection using the Ritz energy method and double Fourier series method. 
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They compared their experimental results with the theory developed. At low static pressure loads 

(20 psi) the results compared favourably with the theory, but the theory under predicted the 

experimental results at the higher pressure loads (60 psi). Since static load testing was not 

conducted on the plates in this study, no comparison could be made.   Mei studied large 

deflections of beams using the Von Karman- Herman equation to determine nonlinear 

multimodal dynamic response of beams and plates. More theoretical development is needed to 

account for the reduction in bending strains as the axial strain increase for increasing transverse 

bending loads. 

43      NONLINEAR DYNAMIC DISPLACEMENT SHAPES 

If a mathematical function can be determined that accurately describes the nonlinear dynamic 

deflection shape, the nonlinear bending and axial strains can be calculated at any point along the 

length of the beam. This can be determined by calculating the first and second derivatives of the 

function, the slopes and curvature, as discussed in this section. 

4.3.1    C-C ALUMINIUM ALLOY BEAM NONLINEAR DYNAMIC 

DISPLACEMENT SHAPES 

The selection of the function is based upon how well the function fits the data and how the 

derivatives behave. Smoothing of the fundamental resonant response was accomplished with a 

seventh order polynomial curve fitting routine, 

y = C + ax. + bx2 + ex3 + dx4 + ex5 + fx6 + gx7 (4.10) 

where C and a to g are constants. Once a continuous function is found for the nonlinear 

displacement shapes, the axial and bending strains at any point along the beam can be found. 
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A seventh order polynomial fit of the raw data is shown in Fig 4.26. The coefficients 

obtained for the seventh order polynomial fit of the displacement shape data and the 

excitation levels are listed in Appendix C, Table C-4.3.  The peak displacement amplitudes 

increase with increasing sinusoidal excitation. The ends of the beam show large curvature due to 

the high bending moments at the clamp. This curvature reverses as expected around the centre 

region of the beam. Large curvature is observed around the centre region of the beam. The 

slopes and curvatures increase with increasing levels of excitation and can be calculated from the 

first and the second derivatives with respect to distance along the length of the beam. The first 

derivatives are shown in Fig 4.27. The slopes do not go to zero at the clamps as required by the 

clamped boundary conditions. The slope is zero as expected at the centre of the beam. The 

second derivatives are shown in Fig 4.28. Errors in the second derivatives are noted near the 

clamps. The curvatures decreases toward the clamp, when they should be increasing. The 

resulting curvatures near the clamp are not accurate. 

A fourth order polynomial fit is shown in Fig 4.29 and the coefficients are listed in Appendix 

C, Table C-4.4. The first and second derivatives are shown in Figs 4.30 and 4.31. The fourth 

order fit seems to yield more reasonable results for these boundary conditions. The maximum 

curvature is about 3.4 x 10 per millimeter which corresponds to 340 microstrain using Eq (2.7) 

where h/2 = 1 for a 2 mm thick beam. This is comparable to the bending strain measured. The 

normalised displacement shapes are shown in Fig 4.32. Curvature near the clamps increases with 

larger sinusoidal forces. 

The response for the lowest level of sinusoidal excitation (0.086 N) and the highest (0.60 

N), shown in Fig 2.21, were compared. A curve fitting computer program was used. Two 

user defined functions are added including a fourth order polynomial, 

y = a + bx   + ex2 + dx3 + ex4 (4.11) 

A partial listing of the functions and the ranking for the 0.086 N excitation force is shown 

in Appendix C, Table C-4.6. The complete list contains 206 functions. The highest ranking 
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is a sine function, followed by a sine squared function. The fourth order polynomial is 

ranked fifth and the classical solution, eighth. The curve fit test data for these four functions 

are shown in Figs 4.33 to 4.36. Generally, these four appear to be reasonable fits. The 

inaccuracies appear at the peak displacement and near the clamps in the first three functions. 

The asymmetrical shape of the data compared with the classical solution and the inaccuracies 

at the peak are the reasons that it is ranked lower than the others. 

A partial listing of the functions and the ranking for the QJ3QM excitation force is shown 

in Appendix C Table C-4.6. The complete list contains 135 functions. The highest ranking 

is the fourth order polynomial, followed by a sine squared function. The sine function is 

ranked third and the classical solution, fourth. The curve fit test data for these four functions 

are shown in Figs 4.37 to 4.40. Generally, these four appear to be reasonable fits. The 

inaccuracies appear at the peak displacement at the centre of the beam, near the clamps and 

in the asymmetrical shape of all four functions. 

The classical solution ranking moves from eighth place in the 0.086 N tests to fourth 

place for the 0.60 N tests. It is not expected that the classical solution has a lower ranking 

for the lower excitation level. At the lower excitation level, the displacement shape should 

be nearly linear and better fit the classical solution. The constant 'b' in Eq (4.9) is shown in 

Table 4.4. The constant increases from 0.0116756 to 0.0117559 with increasing 

displacement amplitude. The normalised classical solution from reference [163] is 

0.0118251 for the first mode. While the numbers may appear to be close in value, small 

changes produce large changes in the curve fit. This is the reason for the six significant 

numbers. Increasing the amplitude into the nonlinear region slightly improved the accuracy 

of the classical solution to predict the nonlinear displacement shape. The strain part of the 

table will be discussed in subsequent paragraphs. 

The second derivatives of the functions for the OJMli tests are shown in Figs 4.41 to 

4.44. Using Eq (4.5) one half of the thickness of a 2 mm beam is 1 mm. The bending strain 

can be determined directly from the second derivatives of the curve fitting functions without 

using a scaling factor. A high degree of precision in the displacement shape is essential for 
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essential for determining bending strain from the second derivative. Both sine functions 

loose accuracy near to the clamps and the centre of the beam due to the inaccuracies of the fit 

in these regions. The curvature decreases instead of increasing near the clamps. The 

derivative of the fourth order polynomial is higher (90 microstrain) than the measurement 

(70 microstrain) at the clamp due to the function increasing curvature more than the 

measurement. The derivative of the classical function is the most accurate near the clamps 

(67 microstrain). The curvature at the centre of the beam is nearly the same for the four 

functions analyzed (about 40 microstrain). All four are lower than the measured value (60 

microstrain). The curve fit is lower in amplitude near the centre of the beam than the 

measured displacements, which is the reason for the differences. 

The second derivatives of the functions for the 0.60 N tests are shown in Figs 4.45 to 

4.48. Both sine functions lose accuracy near the clamps and the centre of the beam due to 

the inaccuracies of the fit in these regions. The curvature decreases instead of increasing 

near the clamps. Comparisons of the strains determined by calculating the derivatives are 

also shown in Table 4.4. The derivative of the fourth order polynomial at the clamp (375 

microstrain ) is higher than the measurement (300 microstrain) due to the function increasing 

curvature more than the measurement. Derivatives of the classical function are the most 

accurate near the clamps (280 microstrain). Derivatives of both sine functions at the centre 

of the beam are nearly the same (195 microstrain). The derivative of the fourth order 

polynomial is 175 microstrain. The derivative of the classical function is 170 microstrain. 

All four are lower than the measured value (235 microstrain) due to the inaccuracy of the fit. 

No clear trends are found in these comparisons, but the strains determined from the classical 

solution and the fourth order polynomial fit are more promising. 

The ranking of the curve fitting functions is based upon the whole length of the beam. 

Increased accuracy is gained by curve fitting a small part of the data near the clamp as shown 

in Figs 4.49 and 4.50. Only fourteen amplitudes were used near the clamp. The classical 

function was used with good accuracy. The bending strain (70 microstrain) determined from 

the second derivative was identical to the measured value (70 microstrain also). The best fit 

of the derivatives of the whole function was the classical solution with appropriate constants 
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for large amplitudes. The next best fit was a fourth order polynomial. The Gaussian 

function (rank 7) is ranked higher than the classical function (rank 8) for the 0.086 N 

excitation. It was ranked sixth for the 0.60 N excitation and the classical function is ranked 

fourth. Many other functions shown in the tables have reasonable displacement shape fits. 

The three constants in the classical Eq (4.9) are examined for the clamped aluminium 

alloy beam. The constant 'a' significantly affects the amplitude of the curve fit but not the 

symmetry about the centre of the beam. The constant 'b' tends to shift the peak of the curve 

off centre. The constant V tends to alter the entire shape. The five constants in the fourth 

order polynomial Eq (4.11) are examined. The coefficients primarily affect the shaping and, 

to a lesser degree, the amplitude. The constant 'a' affects the displacement shapes 

significantly. Examples of the coefficient 'a' for both alumimium alloy and CFRP clamped 

beams are shown in Fig 4.51. The CFRP beam example shown in the figure will be 

discussed in section 4.3.2. All the coefficients from Table C-4.2 generally increase with 

increasing excitation levels as expected, since the measured amplitudes increase. The rate of 

increase of the coefficients with excitation level is irregular or not smooth. The curve is 

similar to the nonlinear strain curves. The coefficients do not increase linearly with the 

excitation force. If the peak amplitude can be estimated for the nonlinear clamped beam, 

coefficients can be estimated by trial and error, starting with the coefficients listed in the 

table. The measurements show an increase in the peak amplitudes as the excitation level 

increases. The measured displacement shapes remain symmetrical at the high levels, but the 

curve fitting becomes more asymmetric the higher the level of excitation. 

Other functions were studied to improved the accuracy of the second derivatives. A 

cosine function with another coefficient is added to the sine function, 

y = a + b sin(2rcx / d + c) + e cos(2rex / d + c) (4.12) 

This did not improve the accuracy of the derivatives.   Extra hyperbolic sine and sine terms 

multiplied by another constant are subtracted from the classical equation, 
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y = a{cosh(bx) - cos(bx) - c[sinh(bx) - sin(bx)}-d[sinh (bx) - sin(bx)]} (4.13) 

This did not improve the accuracy of the derivatives. Higher order polynomials were studied 

up to the seventh order. The fifth and higher orders did not improve the accuracy of the 

derivatives. Third order polynomials are useless for this application, since the second 

derivative of a third order polynomial is a first order function, a straight line. The second 

derivative of a fourth order polynomial is a second order function which is the order 

expected from linear bending theory. 

It is interesting to note that the linear classical mode shape function for the first mode of a 

pinned-pinned beam is, 

sin — (4.14) 
I 

This function ranked high on the goodness of fit in the tables. The pinned-pinned aluminium 

alloy beam curve fitting is discussed in section 4.3.3. The Gaussian function is the best fit 

for the lowest excitation level. The Lorentzian function is the best fit for the highest level of 

excitation. 

Another useful feature of nonlinear displacement shapes is determining the axial strain 

from Eq (2.10) or other methods of determining the change in length due to stretching of the 

deflected beam shape. The axial strain can be determined from the first derivative of the 

displacement shape. Another useful feature of the displacement shapes is correcting the 

strain measurement close to a clamping block. A strain gauge cannot be exactly at the clamp 

due to distortion of the gauge and its adhesive. The strain gauge averages the strain over the 

length and width of the active element. 
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4.3.2     C-C CFRP BEAM NONLINEAR DISPLACEMENT SHAPES 

The fourth order polynomial fits are shown in Fig 4.52. The coefficients obtained for the 

polynomial fits of the displacement shape data and excitation forces are listed in Appendix 

C, Table C-4.7. Results similar to those from the clamped aluminium beam tests in section 4.3.1 

were obtained. The first derivative is shown in Fig 4.53 and the second in Fig 4.54. The shape of 

the slopes and the curvatures are quite similar to those from the clamped aluminium beam tests. 

The coefficients 'a' for the fourth order polynomial fit are shown in Fig 4.51 and compared with 

those obtained from the aluminium alloy beam. The CFRP beam was tested to higher 

displacements since a vibrometer with an increased range was available. The coefficients 

increase with increasing excitation levels, but not in a linear fashion. The shape of the curve 

shown is similar to the strain and displacement curves. Larger coefficients were obtained for the 

CFRP beam than the aluminium alloy beam, due to the larger displacements. A form of the 

bending equation is given by Meirovitch [165 pl61], 

dx2 
EI(x)£2£) 

dx 
= (02m(x)\|/(x) (4.15) 

where E is the modulus of elasticity, I is the second moment of area of cross-section, 05 is the 

frequency and m is the mass density. The stiffness (El) of the CFRP beam is slightly lower than 

that of the aluminium alloy beam, due to the lower modulus of elasticity. The second moments of 

area of the cross-section are essentially the same. The resonant frequencies from Blevins [163] 

are given by, 

As the density increases, the frequency decrease. The density of the CFRP beam is 51.8% of the 

aluminium alloy beam, however the lowest sine dwell frequencies are essentially equal (54.8 Hz 

for the aluminium alloy beam and 56.6 Hz for the CFRP beam). This is due to the lower 

pretension in the CFRP beam (50 microstrain) than the aluminium alloy beam (100 microstrain). 

The remaining term in Eq (4.16) is the mass density. The larger mass density of the aluminium 
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alloy beam lowers the deflection for the same force. The fourth order polynomial fit seems to 

yield reasonable results. 

4.3.3    P-P ALUMINIUM ALLOY BEAM NONLINEAR DISPLACEMENT SHAPES 

Theoretically, the S-S and P-P mode shapes should be sinusoidal as defined in Eq 4.14. The 

mode shape of the simply supported beam is amplitude independent, which is the conclusion 

often assumed in the literature, for example Ray and Bert [95]. Bennouna and White [162] show 

that the mode shapes of the simply supported beam is not affected by nonlinear vibration created 

by large deflections. The resonant frequency increases with an increase of deflection amplitude. 

The mode shape of the pinned beam should be sinusoidal. The nonlinear displacement shapes 

should be affected by the axial strain present from the stretching effect. 

A fourth order polynomial fit is shown in Fig 4.55. The coefficients and excitation forces 

are listed in Appendix C, Table C-4.8. The second derivatives are shown in Fig 4.56. Since the 

polynomial fit altered the shape to that similar to the clamped tests, the derivatives were 

meaningless. Theoretically, the slope should be zero at the centre of the beam and maximum at 

the ends for the pinned boundary conditions. A sixth order polynomial fit of the data is shown in 

Fig 4.57. These fit the raw data better, especially near the pins where theoretically, no bending 

should occur, only stretching. The first and second derivatives are shown in Figs 4.58 and 4.59, 

which again are practically meaningless. Other commercially available curve fitting routines 

were found to be useful. Examples of two that were used for the lowest nonlinear displacement 

shape and the highest are shown in Figs 4.60 and 4.61 with the raw data. Close agreement with 

the raw data is found with a Gaussian equation, 

y     =     a     +    b    exp 

and a Lorentzian equation, 

y a + 

-0.5 
x - c 

f* -  -N2 
1 + 

x - c 

V    d 

(4.17) 

(4.18) 
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where a, b, c, and d are constants. The constants are listed in the figures. A slight curvature in the 

nonlinear displacement shapes is noted near the pins and the bushings. More favourable results 

were obtained with the second derivative of the Gaussian equation shown in Fig 4.62, where the 

maximum curvature occurred at the centre of the beam as expected. The maximum curvature is 

about 7.5x10" per millimeter which corresponds to 75 microstrain for a 2 mm thick beam using 

Eq (2.7). This was somewhat comparable to the measured strain.  The figure also shows some 

curvature at the pins. Pinned boundary conditions assume the bending moment at the boundary to 

be zero. A possible source of the curvature at the boundary is the friction between the pin and the 

bushing in the fixture. 

For the smallest displacement shape, the goodness of fit was 0.99864 with the Gaussian fit and 

0.99794 with the sine fit. While the Gaussian function was the highest ranking fit, the sine 

function was not ranked very much lower than other functions.  For the largest displacement 

shape, best fit was the Lorentzian function and the sine function ranked slightly lower. The sine 

fit was slightly better with the largest displacement shape than with the smallest displacement 

shape, due to the better fit with the data near the pins (less curvature). The friction between the 

pins and the bushing in the fixture would be expected to be less, since the angular velocity was 

greater even though the normal force (axial force) was larger. The only noticeable difference in 

the two displacement shapes (high and low) was the curvature near pins, which, if neglected, 

agrees with simply supported beam theory. The resonant frequency increases with an increase in 

deflection amplitude, since the axial strain increases. This agrees with linear simply supported 

beam theory. 

4.3.4     C-C-C-C ALUMINIUM ALLOY SHAKER PLATE NONLINEAR 

DISPLACEMENT SHAPES 

The nonlinear displacement shapes for the fundamental resonant responses were obtained 

using a fourth order polynomial curve fit are shown in Fig 4.63. The coefficients obtained for 

the fourth order polynomial fits of the displacement shape data in the V direction are listed 

in Appendix C, Table C-4.9. The V direction in the figure corresponds to the width of the 
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plate, the shorter dimension. The 'y' direction corresponds to the length of the plate, the longer 

dimension. The peak displacement amplitudes increase with increasing sinusoidal excitation. 

The ends of the plate show large curvature due to the high bending moments at the clamp. This 

curvature reverses as expected around the central region of the plate. Large curvature is observed 

around the centre region of the beam. The slopes and curvatures increase with increasing levels 

of excitation and can be calculated from the first and the second derivatives with respect to 

distance along the width of the plate. The motion of the shaker head was not subtracted from the 

plate measurements since it was considered small, 0.01 mm peak maximum. The normalised 

displacement shapes are shown in Fig 4.64. This shows more clearly the different curvatures near 

the clamps. The first derivatives are shown in Fig 4.65 This shows more clearly the differences 

between the slopes at the clamped edges of the plate. The displacements near the clamps are not 

quite zero as desired for a clamped boundary condition. The other parts of the curves appear 

more promising. The slope is zero as expected at the centre of the plate. The second derivatives 

are shown in Fig 4.66. The curvature at the clamped edges is not accurate due to the small 

displacements of the shaker head. The strain from the second derivative is 600 microstrain at the 

clamp and the measured value is 400 microstrain. The strain from the second derivative at the 

centre of the plate is 425 microstrain and the measured strain is 300 microstrain. The bending 

strains and the axial strains can be determined from the second derivatives and the first derivatives 

of the nonlinear displacement shapes as discussed in the beam section (4.2). 

The nonlinear displacement shapes and their derivatives for the 'y' direction are shown in Figs 

4.67 to 4.70. The coefficients for the fourth order polynomial fit of the displacement shape 

data in the 'y' direction are listed in Appendix C, Table C-4.10. Results similar to those 

from the test in the 'x' direction were obtained. 

The coefficients 'a' for the fourth order polynomial fit are shown in Fig 4.71 and compared 

with those obtained from the CFRP plate. The CFRP plate studies will be discussed in section 

4.3.5. The coefficients increase with increasing excitation levels, but not in a linear fashion. The 

shape of the curve shown is similar to the strain and displacement curves. 
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435     C-C-C-C CFRP SHAKER PLATE NONLINEAR DISPLACEMENT SHAPES 

The nonlinear displacement shapes for the fundamental resonance using a fourth polynomial 

curve fit are shown in Fig 4.72. The coefficients obtained for this fit of the displacement 

shape data in the 'y' direction are listed in Appendix C, Table C-4.11. The peak displacement 

amplitudes increase with increasing sinusoidal excitation. The ends of the plate show large 

curvature due to the high bending moments at the clamp. This curvature reverses as expected 

around the central region of the plate. Large curvature is observed around the central region of 

the plate. The slopes and curvatures increase with increasing levels of excitation. The motion of 

the shaker head was not subtracted from the plate measurements since it was considered small, 

0.06 mm peak maximum. The normalised displacement shapes are shown in Fig 4.73. The first 

derivatives are shown in Fig 4.74. The slopes do not go to zero at the clamps as required for a 

clamped boundary condition. This is due to the small displacements at the clamps. The slopes 

are not quite zero at the centre of the plate. The asymmetrical shape is also noted in the linear 

mode shapes and the normalised displacement shapes. This could be due the non-homogenous 

material properties.  The second derivatives are shown in Fig 4.75. The curvature at the clamped 

edges is not accurate due to the small displacements of the shaker head. The strain from the 

second derivative at the centre of the plate is 430 microstrain and the measured strain is 315 

microstrain. 

The nonlinear displacement shapes and their derivatives for the 'x' direction are shown in 

Figs 4.76 to 4.79. The coefficients for the fourth order polynomial fit of the displacement 

shape data in the V direction are listed in Appendix C, Table C-4.12. The results obtained 

are similar to those from the measurements in the V direction. The asymmetrical shapes are 

apparent from the normalised displacement shapes and the derivatives of the fourth order 

polynomial fit. 

The coefficients 'a' for the fourth order polynomial fit are shown in Fig 4.71 and compared 

with those obtained from the aluminium alloy plate. The coefficients increase with increasing 
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excitation levels, but not in a linear fashion. The shape of the curve shown is similar to the strain 

and displacement curves. For the CFRP plate, much higher excitations levels were required to 

reach a 5 mm displacement level than were required for the aluminium alloy plate. This is due to 

the much lower density of the CFRP material, 51.8% of the aluminium alloy. 

4.4    LINEAR FREQUENCY COMPARISONS 

4.4.1    BEAM LINEAR FREQUENCY COMPARISONS 

The first five linear, transverse bending natural frequencies for a C-C and a S-S beam were 

calculated using two methods, Blevins [163] and a finite element method (FEM) developed by 

Chen [164]. The frequencies are compared with sine and random low level excitation test data as 

shown in Table 4.5. The frequencies are greatly affected by the initial strain tension applied to 

the beam and by the mass of the exciter coil. A two Hz difference between the random test data 

and that calculated is seen for the C-C beam. This may be attributed to small temperature 

variations during the test which were less than 1 C. The thermal coefficient of linear expansion 

is much greater for aluminium alloys than steel. For the first and third modes, the random test 

results are almost equal to the FEM theoretical results for the C-C condition. The frequencies for 

the S-S condition are always less than those for the C-C condition. Since the test results are close 

to the theoretical results, the clamping fixture is considered effective in simulating the clamped 

boundary conditions. The sine test results are not quite as favourable.  The resonant frequencies 

are very sensitive to the boundary conditions, pre-tensioning and mass added to the beam which 

makes it difficult to compare the results. 

The C-C aluminium alloy beam linear mode shapes are well defined and symmetrical about 

the centre. They closely resemble the linear theory except for the distorted first mode shape 

found between the fourth and fifth modes. The C-C CFRP beam linear mode shapes are well 

defined and symmetrical about the centre only for the first mode. The second and third modes are 

distorted and occur at two closely spaced frequencies, 370 and 389 Hz. The fourth and fifth 

modes likewise are distorted and occur in the same region, 899 and 1025 Hz. 
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4A2     PLATE LINEAR FREQUENCY COMPARISONS 

The first and the third linear modal frequencies for a C-C-C-C and a S-S-S-S plate were 

calculated using a method from reference [7 p 285] and compared with the modal test data as 

shown in Table 4-6. The fundamental natural frequencies for a flat rectangular specially 

orthotropic plate with C-C-C-C boundary conditions is given by, 

2      3:8325_r   30 a4+330 b4+2D   /a2b2l     ^ (4>19) 
11 ph     L J 

where Dx = ^  (4.20) 
12(1-1>12U21) 

D lül^!  (4.21) 
'2 

12(1-D12D21) 

D  =     ^2iEiih3     +1G      3 (4.22) 

12(l-i>12u21)    6 

where D is the stiffness parameter, f is the frequency, p is the density, h is the thickness, a is the 

width of the plate, b is the length of the plate, D is Poisonn's ratio, E is Young's modulus and G 

is the shear modulus. The fundamental natural frequency for a flat plate with S-S-S-S boundary 

conditions is given by, 

f2 =JL_[D  /a4+D2/b4+2D3/a2b2] Hz2 (4.23) 
4phL J 
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Modal frequencies for practical boundary conditions usually are found between the clamped and 

the simply supported boundary conditions. 

Reasonable agreement is obtained comparing the first natural frequency of the aluminium 

alloy shaker plate theoretical result (221.7 Hz) with the test results (207.8 Hz). Since both the 

clamping frame and the test plate were of aluminium alloy, thermal stress is not a factor in 

pretensioning the plate. The slight decrease in the measured results is an indication of the 

effectiveness of the clamping arrangement. The frequency is far from the simply supported 

boundary conditions, 114.9 Hz. Comparing the clamped third modal frequencies shows a 

difference of 24.5 Hz, larger than the 13.9 Hz difference for the first mode. This comparison is 

reasonable considering the higher modes are usually more difficult to predict. 

Reasonable agreement is obtained comparing the first natural frequency of the CFRP shaker 

plate theoretical result (221.8 Hz) with the test result (156 Hz). Since the clamping frame and the 

test plate are very dissimilar in their thermal coefficients of expansion, thermal stress is a major 

factor in tensioning or compressing the plate. Comparing the clamped third modal frequencies 

shows a difference of 287 Hz, much larger than the 66 Hz difference for the first mode. This 

comparison is not reasonable until the thermal effects are factored into the results. 

Comparing the first natural frequency of the aluminium alloy APWT plate theoretical results 

(90.4 Hz) with the test result (180 Hz) indicates a large difference in frequency. Since the test 

plate was pretensioned, the experimental frequency is expected to be greater than that predicted. 

This comparison is not reasonable until the thermal effects are factored into the results. 

Comparing the third modal frequencies shows a difference of 127 Hz, larger than the 90 Hz 

difference for the first mode. 

Comparing the first mode of the CFRP APWT plate theoretical result (59 Hz) with the test 

result (59 Hz) indicates, surprisingly, an exact match. Comparing the third modal frequencies 

shows a difference of 40 Hz, larger than the 0 Hz difference for the first mode. This comparison 

is reasonable considering the higher modes are usually more difficult to predict. 
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The C-C-C-C aluminium alloy shaker plate linear mode shapes are well defined and 

symmetrical about the centre. They closely resemble the linear plate theory. The C-C-C-C CFRP 

shaker plate linear mode shapes are slightly less symmetric about the centre of the plate than those 

found in the aluminium alloy plate tests. The 1:2,2:3 and 3:3 modes were not found for the 

CFRP shaker plate, leaving a gap in the modal responses. 

4.5    COMPARISONS OF INTEGRATAING ACROSS THE 
STRAIN SPECTRAL DENSITIES 

Comparisons have been made of the integrals across the strain spectral densities. The 

first resonance at an edge gauge location of the aluminium alloy shaker plate at the highest 

excitation level (14.4 g) contributed 76% of the total strain compared with 93% for the 

CFRP shaker plate tests. The CFRP plate first resonant response is dominant, more so than 

that of the aluminium alloy shaker plate. The first two resonances at a centre gauge location 

of the aluminium alloy APWT plate at the highest excitation level (158 dB OSPL) 

contributed 70% of the total strain. The first resonance at an edge gauge location of the 

CFRP APWT plate at the highest excitation level (152 dB OSPL) contributed 30% of the 

total strain. The CFRP APWT plate tests indicate the importance of higher order resonant 

responses. Approximately 55-70% of the overall strain levels come from higher order 

resonances. The size of the two APWT plates is a major factor. The CFRP plate was larger 

with a smaller thickness than that of the aluminium alloy plate. Also the gauge location is 

important since the resonant peak amplitudes are different at the centre of the plate than that 

at the edge of the plate. 

Similar characteristics are observed for the integrals across of strain spectral densities to 

those obtained by White [17 p 255]. At the low excitation levels (130 dB OSPL), the first 

resonance contributed 60% of the total. At the high excitation levels (154 dB OSPL), the 

first resonant response contributed 50% of the total strain. At the highest excitation level the 

resonant phenomenon almost disappears. The modal contributions are not very 

distinguishable. It appears that the nature of the response changes from that of a multi- 

resonant system to that of a non-resonant system strongly forced system. 
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4.6    NONLINEAR RANDOM BEAM COMPARISONS 

Both clamped beams exhibited a slight frequency shift and peak broadening in the resonant 

responses. Bistable frequency response (jump phenomenon) is obtained with sinusoidal 

excitation of structures made of both types of material. This occurs when the excitation 

amplitude is constant and the frequency is swept upward or downward around the fundamental 

resonant frequency. Bistable amplitude response (jump phenomenon) occurs when the frequency 

is constant (near the fundamental resonant frequency) and the amplitude is increased or decreased. 

The total strains and the components, bending and axial and the displacements were measured 

with increasing levels of excitation. The measured axial strains are much lower than the 

measured bending strain at the centre of the beam and near the clamp. The axial strain 

significantly reduces the bending strain at high excitation levels. The beam is much suffer in 

stretching than in bending. The frequency of the in-plane strain component is always twice the 

frequency of the annotated flexural resonance. Or, the response at the fundamental frequency is 

one half the frequency axial strain component. The amplitude of the axial strain component is 

always positive. When randomly excited, both beams exhibited a slight resonant frequency shift 

and peak broadening, which can be attributed to an increased stiffening or hard spring 

nonlinearity described in reference [86]. With a longer beam of the same cross-section, such as 

that studied by Bennouna [155], the axial strain is a larger percentage of the total strain. The 

static strain response of both CFRP beams did not exhibit a nonlinear response as great as the 

dynamic case with sinusoidal and random excitations. 

The aluminium alloy beam APDFs were nearly Gaussian for all levels of excitation. Slightly 

more positive amplitudes are present than negative amplitudes at high sigma values. At low 

sigma values, slightly more negative amplitudes are present than positive values. These same 

characteristics are found in the CFRP beam APDFs. 
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47    NONLINEAR RANDOM SHAKER PLATE COMPARISONS 

Both clamped shaker plates exhibited a large frequency shift and a large peak broadening. The 

total strains and the components, bending and axial, and the displacements were measured with 

increasing levels of excitation. The measured axial strains are much lower than the measured 

bending strains at the centre of the beam and near the clamp. The axial strain significantly 

reduces the bending strain at high excitation levels. The plate is much suffer in stretching than in 

bending. The frequency of the in-plane strain component is always twice the frequency of the 

annotated flexural resonance. The amplitude of the axial strain component is always positive. 

When randomly excited, both shaker plates exhibited a large resonant frequency shift and peak 

broadening, which can be attributed to an increased stiffening or hard spring nonlinearity as 

described in reference [86]. 

The clamped aluminium alloy shaker plate APDFs differ from a Gaussian distribution at high 

sigma values. More positive amplitudes are present than negative amplitudes at high sigma 

values. At low sigma values, more negative amplitudes are present than positive values. These 

same characteristics are found in the CFRP shaker plate APDFs. No significant changes are 

found in comparing the aluminium alloy APDFs with those from the CFRP structures. These 

same characteristics were found in the APDF obtained by Ballentine [156 p 255] for an 

aluminium alloy panel. 

4.8    NONLINEAR RANDOM APWT PLATE COMPARISONS 

For high level acoustical excitation of a clamped plate, the responses at resonant frequencies 

are less pronounced (larger bandwidth) than for low level excitation. Responses at resonant 

frequencies higher than the fundamental resonance contribute significantly to the overall induced 

response. Multimodal effects become more significant at high levels of excitation. 

Both clamped APWT plates exhibited a large resonant frequency shift and a large peak 

broadening. The total strains and the components, bending and axial, and the displacements were 
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measured with increasing levels of excitation. The measured axial strains were much lower than 

the measured bending strains at the centre of the plate and near the clamp. The axial strain 

significantly reduces the bending strain at high excitation levels. The frequency of the in-plane 

strain component is always twice the frequency of the annotated flexural resonance. When 

randomly excited, both shaker plates exhibit a large frequency shift and peak broadening, which 

can be attributed to an increased stiffening or hard spring nonlinearity described in reference [86]. 

The aluminium alloy plate APDFs differed from a Gaussian distribution at high sigma values. 

More positive amplitudes were present than negative amplitudes at high sigma values. At low 

sigma values, more negative amplitudes are present than positive values. A shift in the mean 

value occurred for the lowest excitation level (140 dB OSPL) for SG 9, more than expected from 

the axial strain. This should be corrected before any further evaluation can be made. Shifts in the 

mean values were also present in the SG 10 data. The same characteristics were also found in the 

clamped CFRP shaker plate APDFs. No significant changes were found in comparing the 

aluminium alloy APDFs with those from the CFRP tests. 

The aluminium alloy plate was tested in the ISVR AWPT, with no clipping of the input signal 

to the coil of the air modulator valve. The CFRP plate was tested in the WL AWPT, with heavy 

clipping of the input signal to yield a crest factor of 1.4. The microphone and strain APDFs at the 

plate location do not indicate any significant changes due to clipping the input. The APDF of the 

input signal resembles that of a sine wave, but as this waveform propagates down the coupling 

horn and into the test duct, the APDF of the pressure changes to that similar to a Gaussian 

distribution. This can be explained as acoustic finite amplitude effects develop within a fraction 

of one wave length from the source, as described in more detail in section 3.2.1. Both unclipped 

and clipped random input signals produce the desired APDF at the test plate location. 

Different characteristics are found in the APDFs obtained by White [17 p 255]. Higher 

negative amplitudes occurred at large sigma values than positive amplitudes at high OSPLs. The 

CFRP plate used was only four plies thick (0 ,90 ,90 ,0 ) fabricated from DX 210 resin with 

HT-S carbon fibres, which is different than that used in this study. A major parameter in the 
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nonlinearity of composite plates is thickness. It is recognized in ESDU design charts that linear 

prediction methods are not applicable to composite plates with less than six plies. 

4.9    COMPARISON OF STRAIN STATISTICAL MOMENTS 

Strain statistical moments are calculated to determine trends in response data. Results from 

the aluminium alloy beam and shaker plate tests and the CFRP beam and shaker plate tests are 

summarized in Table 4.7. For a Gaussian probability density function, the mean is zero, the 

skewness is zero and the kurtosis is three. The mean values increase as the excitation levels 

increases. This is expected since the axial strain increases which adds to the bending strain 

amplitudes. The neutral axis is not on the centre line of the structure. The means are low 

compared with the rms levels which makes the mean values difficult to determine. The mean 

values of the two beams at approximately 6 N are about equal. The skewness of the probability 

density function of the random response of the aluminium alloy beam under the excitation of a 6 

N force was 0.187; that for the CFRP beam was 0.311. The skewness for the aluminium alloy 

plate follows approximately that of the aluminium alloy beam. The skewness is higher (0.311) 

for the CFRP beam at 6.54 g than that of the aluminium alloy beam (0.187) excited at 6.24 g. 

No clear trend is observed in examining the kurtosis for the four test specimens. The range is 

2.53 to 3.04. The moments for the shaker plates are calculated from the same time history as the 

12 second time duration, but extending the analysis to include a total of 25 seconds at the highest 

level of excitation (14.4 g). The skewness and kurtosis increased very slightly. 

The statistical moments calculated for the CFRP APWT plate are shown in Table 4.8. 

Generally, the absolute value of the mean value increases with increasing OSPL. The mean 

values are negative for strain location 2 and positive for strain location 3. For both locations the 

skewness increases. At location 2, the skewness increases from 0.059 to 0.316. The kurtosis 

seems to have an increasing trend from 2.96 to 3.59. The moments calculated using the 25 

second time history are shown in the table. Comparing the data from the 12 second record with 

that from the 25 second time history, the rms value and the kurtosis value decreased slighdy. The 

skewness increase slighdy. Small differences are noted in the comparisons of the minimum and 
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maximum amplitudes, the rms values and the standard deviations. Higher values are obtained 

near the clamp (location 2) than the centre (location 3) of the plate as expected. The skewness 

values of the strain response obtained for the CFRP APWT plates are significantly higher than 

those for any of the aluminium alloy test specimens. 

Similar tests on a CFRP plate were conducted in a progressive wave tube by White [17 p 256] 

and the statistical moments were calculated. The mean values for three strain gauges were all 

negative increasing in absolute value as the OSPL increased. The mean value computed in this 

section for the CFRP APWT plate were positive at one strain location and negative at another 

location. The skewness values obtained by White are all negative (-0.012 to -0.930) and not 

necessarily increasing with the OSPL. The skewness in this thesis for SG 2 are 0.059 to 0.316 

and all positive. The kurtosis values obtained by White are 2.91 to 3.11,3.31 to 4.85 and 2.65 to 

3.02 with no obvious trend due to an increase in OSPL. The kurtosis values in this thesis are 2.96 

to 3.59 with a weak trend toward increasing with increasing OSPLs. Considering the size of the 

plates, number of plies and their lay-up and the uncertainty in interpreting negative mean values, 

the comparisons are reasonably close. An aluminium alloy plate was also tested in reference [17]. 

The skewness values were much higher for the CFRP plate than the aluminium alloy plate tested. 

This observation also agrees with the results of this study. 

More information is available from the strain and force normalised APDFs. The strain 

APDFs are found in chapters I and II. The excitation signals should be linear and nearly Gaussian 

in order to study nonlinear response characteristics of beams and plates. The normalised force 

APDFs for the C-C aluminium alloy beam fit almost perfectly a Gaussian distribution except at 

the lowest two levels of excitation, 0.815 N and 1.47 N. A small amount of offset occurs 

probably due to a small amount of DC drift, which is difficult to prevent because of the signal-to- 

noise ratio at low signal levels. The normalised force APDFs for the C-C CFRP beam fit almost 

perfectly a Gaussian distribution except at the lowest two levels of excitation, 1.08 N and 2.14 N. 

The normalised force APDFs for the C-C-C-C aluminium alloy shaker plate nearly fit a Gaussian 

distribution except at the lowest two levels of excitation, 1.46 g and 5.64 g. The normalised force 

APDFs for the C-C-C-C CFRP shaker plate nearly fit a Gaussian distribution except at the lowest 

two levels of excitation, 1.45 g and 5.64 g. The normalised force APDFs for the C-C-C-C 
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aluminium alloy APWT plate arc close to a Gaussian distribution in the range of -3.5 and -2 

sigma and +2 to +3.5 sigma, The normalised force APDFs for the C-C-C-C CFRP APWT plate 

are nearly Gaussian but slightly skewed towards the negative amplitudes. Since the kurtosis of 

the strain responses is nearly 3, any small deviations in the kurtosis of the excitation did not 

appreciably influence the results. 

41©    COMPARISONS OF THE RESULTS WITH ANALYTICAL 

METHODS 

Most analytical methods studied require a great deal of work to implement the lengthy 

computer programs successfully or require the development of new software to model and 

validate the nonlinear characteristics desired. While neither were successfully completed, many 

features and short comings became apparent. 

Commercially available programs studied included ANSYS, COSMOS/M, ABACUS, 

ALGERIA, MSC NASTRAN and MACRO. The types of nonlinearities which are possible 

to model using structural FEM programs seem to be material, plastic region crash dynamics, 

buckling, and temperature dependent material properties. PATRAN PLUS pre and post 

processing and ANSYS V were available for use. The code needs to be analyzed to 

determine how the stretching nonlinearity is formulated. The formulations used to produce 

these computer programs require a great amount of time to locate and analyze. A 

multimodal nonlinear FEM program developed by Mei was incorporated into 

MSC/NASTRAN [34], discussed in section 1.1.2. Further work will be required to evaluate 

the program. 

The literature search for work on the nonlinear response of C-C and P-P flat thin beams 

and C-C C-C flat rectangular plates composed of both homogeneous and laminated materials 

produced many papers cited in Chapter I. Most papers introduce an in-plane strain as the 

beams and plates deflect from their initial positions. This nonlinearity is introduced by the 
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force due to mid-plane stretching at large deflections. Linear assumptions that plane sections 

remain plane and a linear stress-strain law seem to be prevalent. 

Many of the equations of motion reduce to the well known Duffing equation. Other 

solutions of superharmonic and subharmonic component amplitudes exist, near the shifted 

backbone curve, found in Nayfeh and Mook [87]. They allow for nonplanar motions, 

longitudinal inertia and stretching. Transverse shear and rotary inertia terms are neglected. 

A case for coupled longitudinal and transverse oscillations is made. There is a continual 

exchange of energy back and forth between the longitudinal and transverse motions due to 

vanishing coupling coefficients leading to internal resonance. The idea is to study the 

transfer of energy between modes. This is applicable for parametric oscillations. The 

formulations studied are applicable only for sinusoidal excitation. While the transfer of 

energy from one mode to another is a very important phenomena for some cases, it did not 

seem to occur under the conditions tested for the C-C beam. 

Multimodal nonlinear plate response for elevated thermal environments is formulated by 

Lee [166]. His modal differential equations contain an inertia term, viscous damping, 

external forcing, a linear stiffness term, two cubic nonlinear stiffness terms arising from the 

quasi-linear contribution and the product of the W and F functions, a global thermal 

expansion due to uniform temperature, one for temperature variation and a term for the 

moment due to the temperature gradient across the plate. He solves the equations for the 

pinned plate case and the clamped plate case. The temperature effects can be neglected for 

the room temperature case. The stresses are separated into bending and membrane. 

Neglecting the temperature terms for the pinned plate case, the rms membrane and bending 

stresses are, 

ß2 +x> ß2 

a™ = -^ — W2 -i-W2 cos27tx (4.24) x     2(l-\)2)   n     2    " 

äx
b =^^W2

lVl(x)Vl(y) (4.25) 
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where ß =b/a, Z=z/h, G is the rms stress, 'm' superscript is membrane and 'b' is bending, W 

and \|/ are plate functions and D is Poisson's ratio. For the clamped plate case, 

ö- = 
2ß2+0) 

3(1+D2) 
wA- 32 

•W- 11 

ß2 ß2 cos2ftxcos2jty z— cos22ry-J-— cos47ty ———— + 
4 16 2(ß + ß~1)2 

cos27txcos47ty    cos47txcos2ji;y 
-1\2 (ß + 4ß-1) 1\2 4(4ß + ß"1) 

(4.26) 

äx
b = 

2Z 

(1-D2) 
w1

2
1a11[ß2cos2rcy1y + 'i>\|r(x)cos2jEy] (4.27) 

It is noted that both membrane stresses are functions of Wu
2 and both bending stresses are 

functions of W„. The membrane stresses are squared functions, whereas, the bending 

stresses are the first power of the functions. This appears contrary to the test results of the 

C-C aluminium alloy plate results which do not indicate rapid increasing membrane stresses 

compared with bending stresses as excitation levels increase. The formulations seem to 

agree with those published by other authors. Further work will be needed to compare with 

the experimental results. 

Schudt and Zavodney [79] studied peak broadening by generating a family of typical response 

characteristics. These represented the effects of the damping and the cubic nonlinearity 

coefficients in the Duffing oscillator when subject to random excitation. An externally excited 

'hardening Duffing oscillator' is used, 

x + 2 e Cx + x+ e Kx3 = F(t) (4.28) 

where e, £ and K are coefficients. The damping ratio coefficient is C, fixed at selected 

realistic values. The other coefficients are selected accordingly to study their effect on the 

response. The response is obtained by direct integration of the governing equation of motion 
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using a fifth order Runge-Kutta-Verner algorithm. The selection of coefficients is the key 

element in the usefulness of the method and prior knowledge of the system characteristics is 

advantageous. This method and others studied seem to yield good approximations of the 

peak broadening phenomena, but require a considerable amount of work to implement. A 

modified form of the nonlinear equation of motion is given by, 

[m]x+ [c]x+ [k]x + b[k]xa = F(x, t) (4.29) 

where [m] is the mass matrix, [c] is the damping matrix, [k] is the stiffness matrix, F is the 

force and 'a' and 'b' are nonlinear coefficients to be determined. If the stiffness (El) is 

changing, then the potential energy (PE) is changing producing a nonlinear force. Applying 

Newton's second law (F=ma), the acceleration should change as the force produced by a 

nonlinear spring changes. The kinetic energy (KE=l/2 mV2) should also change in a similar 

fashion as the PE. The acceleration term in the equation should change in order for the 

conservation of energy to be maintained. Incorporating the kinetic energy into the equation 

of motion results in an additional acceleration term in addition to the additional stiffness 

term, 

[m]x+d[m](x)e +[c]x+[k]x + b[k]xa =F(x,t) (4.30) 

where [m] is the mass matrix, [c] is the damping matrix, [k] is the stiffness matrix, F is the 

force and a, b, d and e are nonlinear coefficients to be determined. The solution of the 

nonlinear equation of motion above would be a formidable task. A more practical approach 

would be to formulate set of empirical guidelines to estimate the nonlinear displacement 

shapes and the maximum rms stress response. 
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V   IMPLICATIONS OF NONLINEAR BEHAVIOUR IN 

RELATION TO FATIGUE LIFE 

5.1    INTRODUCTION 

Many fatigue models arc found in the literature. The Miner single mode model is selected for 

further investigation to develop a multimodal nonlinear model. Miner's linear cumulative damage 

rule [2] proposed that fatigue damage of a metallic material under cyclic stress is related to the net 

work absorbed by the material and that the rate of damage accumulation is linearly proportional 

to the number of cycles at a stress level, independent of the stress level. The incremental damage 

resulting from n. cycles at a stress level S{ is then nj/N(Sj) where N(S;) is the number of cycles to 

failure at the stress level S. as given by a constant amplitude S-N curve or a constant life fatigue 

diagram. 

T N(Si) 

Miner's rule has been used to predict random loading fatigue life by Bennouna and White [117] 

and Rudder and Plumblee [7], 

PD(£)n_1 

Nt = I- (5.2) 
N 

where Nt is the total number of cycles, Pp (e) is the strain peak probability density and N is the 

total number of cycles to failure at incremental strain levels (derived from a strain versus cycles to 

failure curve). The maximum mean square stress in an acoustically excited plate from Clarkson 

[1] is expressed as, 

S2(t)  «  ^ fnGp(fn) 
So (5.3) 

where S0 is the static stress, S is the rms stress, Gp (fn) is the sound power spectral density, fn is 

the resonant frequency, £ is the viscous damping factor, Fo is a uniformly distributed static force 

98 



CHAPTER V 

(assumed to be equal to one) and t is time. This equation uses only the first mode response and 

assumes that the static and dynamic deflected shapes are identical and that the acoustic pressures 

are in phase over the whole panel. Rather than referring to the modes as deflections in space at 

the nonlinear resonant responses, the simple terms mode or multimode are used, which is more 

familiar but strictly speaking, not precise. The first, third and fifth vibration modes seemed to be 

the predominant modes found from the results of the acoustic progressive wave tube test of 

plates. Assuming that the first, third and fifth modes are the major contributing sources of 

response, an estimate of the total mean square stress may be expressed as, 

S2(t) « A1^-f1Gp(f1)S? + A3^f3Gp(f3)S^ + A5^-Gp(f5)S^ (5>4) 

where A is a coefficient and A{+ A3 + A5 = 100%. The static pressure assumption for the first 

mode is dependent upon the length, width and thickness of the plate, upon which the natural 

frequencies are dependent. The critical part is determining the contributions of the higher order 

vibration modes with the coefficients A3 and A5. These can be estimated from the normalised 

integration of the strain spectral densities as discussed in the experimental sections. Another 

difficult part is the estimation of the strain power spectral densities for the first, third and fifth 

modes. Further investigation is needed to evaluate this model. 

5.2    MULTJMODAL FATIGUE MODEL 

The statistical nomenclature used herein is, 

rms2 = a2 + m2 (5.5) 
where rms is the root mean square, a is the standard deviation (sd), a2 is the variance and 

m is the mean. Rewriting Eq (5.5) yields, 

rms2 = (sd)2 + m2 (5.6) 

where sd and o are the same. Standard deviation is used here to avoid confusion when the mean 

value is assumed to be zero. Then the rms value is equal to the standard deviation. However, 

these studies include the mean value which is not zero. This non-zero mean value is the result of 

the axial strain in nonlinear transverse bending response of clamped beams and plates. Using 
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Miner's rule for the assessment of fatigue life for a single mode response, the following equation 

was used to estimate the time to failure, 

-i-i 

Nt(hours) = I Pp(sd) 
3 60 Of (5.7) 

where P (sd) is the peak standard deviation probability density, Nt is the total number of cycles 

to failure at a specified strain level and fc is the cyclic frequency. The standard deviation is used 

to compute the time to failure. Most of the S-N curves or e -N curves are approximated as a 

straight line on a logarithmic graph. The relationship between strain and the cycles to failure is 

then, 

-■ ■ \s (5.8) 

where K is a constant and a the slope of a straight line on a log-log graph. Equation (5.7) can be 

written as, 

Nt = 1 Pp(sd) 

(K/e)a 3 60 Of. (5.9) 

The cyclic frequency f for a single mode case is the natural frequency of the mode. Given a 

particular peak probability density curve from an experiment, the number of peaks and the sample 

time t can be used to determine the effective multimodal cyclic frequency, 

f   = number of peaks /t (5.10) cm r s 

where f    is the effective multimodal cyclic frequency. Substituting in equation (5.8) for the 

multimodal case, 

pD(sdr = J V   p{   ) 
Nt~1|2L (K/e)a 3 60 Of. (5.11) 

Strain peak probability densities for the multimodal case are dependent upon the model used to 

define a peak in the time history. A sample strain time history (12 s) for the C-C aluminium alloy 

beam excited at a high level (10-400 Hz) is shown in Fig 5.1. The rms value is 336 microstrain, 

the mean value is 26.4 microstrain, and the maximum peak is 1450 microstrain. The history is 
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expanded in increments of 0.1 seconds as shown in Figs 5.2 and 5.3. The 'average' frequency is 

determined from a time history by taking the reciprocal of the time for one complete cycle. A 

number of combinations of the two superimposed response frequencies 55 and 320 Hz can be 

observed. During the same time intervals only the high frequency appears and other intervals 

both appear. The highest level appears when both peaks are high. The highest peak and the crest 

factor (CF) are important when considering cumulative damage. The crest factor is the peak 

value divided by the rms level. The statistical values change with each short time interval 

including the crest factor. A sample time history for the C-C-C-C aluminium alloy shaker plate 

excited (10-1000 Hz) at a high level (425 microstrain) is shown in Figs 5.4 and 5.5. More natural 

frequencies were noted due to the two dimensional nature of the modes. 

Two types of peak probability density techniques are investigated from multimodal nonlinear 

strain responses. These are called major peaks and minor peaks. The major peaks are counted for 

the largest peaks between zero crossings. The minor peaks are counted for all stress reversals or a 

positive slope in the time history followed by any negative slope. Examples of these two 

extremes in the peak counting are shown in Figs 5.6 and 5.7. The effective cyclic frequency is 

much higher for the major peak count than the minor peak count. However, the peak probability 

density functions or PPDFs compared for these two cases are almost the same.  The major peak 

method was selected for further study. The cyclic multimodal frequency is determined for three 

test cases from each major peak PDF as shown in Table 5.1. In general, the cyclic multimodal 

frequency increases as the standard deviation (microstrain) increases. The cyclic multimodal 

frequency for the aluminium alloy beam at the highest level resulted in f     = 600 Hz, the CFRP 

beam, 390 Hz and the C-C-C-C aluminium alloy shaker plate, 902 Hz. Considering the modal 

frequencies involved, these frequencies are high compared with the fundamental resonant 

frequencies. If the minor peak method is used, the frequencies would be much higher. The major 

peak PDF is used in this study. Rewriting equation 5.11 in terms of standard deviation yields, 

PD(sd) 
Nt=- 

^[K/(£ 
3 60 Of    I (5.12) 

(scor. 
This model accounts for the axial strains where the mean is not zero. If the mean is zero, then the 

standard deviation is equal to the rms value. 

101 



CHAPTER  v 

S3    COMPARISON OF PEAK PDFs AND DAMAGE MODEL 

Rice [84] discusses the peak probability distribution which depends greatly on the signal 

bandwidth. For a wide band random process, the number of peaks exceeds the number of zero 

crossings and the PPDF is a Gaussian distribution. In the narrow band case the PPDF is a 

Rayleigh distribution. In all random tests conducted, the bandwidth was wide enough to include 

two or more resonant frequencies. While (10-400 Hz) is not a narrow band process, it is more 

toward a wide band process (0-10,000 Hz) in its characteristics. Other bandwidths were used, for 

example 10-1000 Hz and 50-1000 Hz, which more closely resemble the characteristics of wide 

band rather than narrow band process. 

5.3.1    CLAMPED ALUMINIUM ALLOY BEAM PPDFs 

The strain major peak probability density functions (PPDF) were determined for the 

experimental test cases. The computer program used computed PDFs by removing the mean 

values, assuming a zero mean. This results in the 'x' axis of strain divided by the rms value. 

The mean values were added back in using Eq (5.6) which resulted in an 'x' axis of strain 

divided by the standard deviation. Since the mean is nonzero the 'x' axis or sigma is the 

strain divided by the standard deviation. The major peak probability density functions are 

determined for the C-C aluminium alloy beam at the centre strain location for the low level 

test (0.50 N) and high level test (6.46 N) with random excitation from 10-400 Hz. The 

PPDFs were compared with a Gaussian distribution as shown in Fig 5.8. The low level case 

followed the Gaussian distribution closely for the positive sigma values and slightly 

exceeded the values for the negative values of sigma between -0.75 to -2.25. The high level 

case also followed the Gaussian distribution closely for the positive sigma values, but 

changed considerably for a negative value. A higher concentration of peaks above the 

Gaussian distribution was noted around -1 sigma and a lower concentration of peaks was 

noted around -2 sigma. The larger values of sigma represent the high level peaks which can 

cause larger amounts of damage. The major peak probability density functions for the strain 
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location near the clamp, for the low level test (0.50 N) and high level test (6.46 N) are shown 

in Fig 5.9. These are compared with the Gaussian and the Rayleigh distribution functions. 

The Rayleigh distribution function theoretically describes the peak probability densities of a 

single mode response case. It is not useful for the multimodal case since the response of the 

beam more closely resembles that of a Gaussian function. Comparing PPDFs for SG 1 and 

SG 3 indicates a high shift in the number of peaks around -1 sigma for the high level case. 

This results in few peaks around -2.2 sigma and much fewer around 0 sigma. The results 

obtained with the 10-1000 Hz excitation are shown in Fig 5.10 for the strain location near 

the clamp, where three resonant frequencies respond. Increasing the bandwidth from 10-400 

Hz adds a third resonant response which results in a PPDFs following more closely a 

Gaussian distribution and the previously noted effects in the regions of -1 and 0 sigma did 

not occur. 

5.3.2    CLAMPED ALUMINIUM ALLOY SHAKER PLATE PPDFs 

The strain major peak probability densities were determined for the low level (1.46 g) and 

high level (14.4 g) excitation of the C-C-C-C aluminium alloy shaker plate with random 

excitation from 10-1000 Hz as shown in Fig 5.11. A lower concentration of peaks is noted 

around +2 sigma and -2 sigma. Higher concentrations of higher sigma values are obtained 

for the high level excitation than those of the low level excitation. A comparison with the 

high level beam case (10-1000 Hz) indicates that both have very similar characteristics 

except for the number of peaks around +1.75 and -1 sigma. The shaker plate case shows an 

increased number of peaks in these regions and a shift toward more negative peaks but fewer 

peaks around -2 sigma. 

Most of the time histories analyzed were of 12 seconds time duration. Some test records 

were 25 seconds long, which were also analyzed. With longer records, the statistical 

properties may change. A sample 25 second time history for the clamped aluminium alloy 

shaker plate is shown in Fig 5.12. The mean value is 20.7 microstrain, the standard deviation 

is 424 microstrain, the maximum peak is 1800 microstrain and the minimum peak is -1420 
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microstrain. For the 12 seconds case, the mean value is 28.5 microstrain, the standard deviation 

is 428 microstrain, the maximum peak is 1770 microstrain and the minimum peak is -1440 

microstrain. The maximum peak increased from 1770 to 1800 microstrain. The minimum peak 

increased from -1420 to 1440 microstrain. Very little accuracy is gained by analyzing the 25 

second time records instead of the 12 second records, but the computer time and storage is 

significantly higher. A comparison of the 12 second strain amplitude PDFs for 12 and 25 seconds 

time histories is shown in Fig 5.13. Very little changes are observed at the higher sigma values. 

5.3.3 CLAMPED CFKP SHAKE1 PLATE PPDFs 

The strain major peak probability densities were determined for low level (1.45 g) and 

high level (14.4 g) excitation of the C-C-C-C CFRP shaker plate with random excitation 

from 10-1000 Hz as shown in Fig 5.14 and compared to the Gaussian distribution. The low 

level excitation peaks are close to the Gaussian distribution at values of sigma larger than 2. 

However, at other values of sigma, the PPDFs do not resemble a Gaussian distribution. A 

high concentration of peaks is noted between 1 to 2 and -1 to -2 sigma. At the high level of 

excitation, the peaks between 1 to 2 and especially -1 to -2 are significantly larger than the 

Gaussian distribution. No evidence of buckling is found in examining the time histories. 

The frequency response of this plate contains more resonant response peaks than that of the 

aluminium alloy shaker plate for the same frequency range. 

5.3.4 CLAMPED ALUMINIUM ALLOY APWT PLATE PPDFs 

Aluminium alloy APWT plate strain major peak probability densities for four levels of 

excitation are shown in Fig 5.15 for the strain location at the centre of the width of the plate 

(SG 10). For all test conditions, some shifts around zero are noted. Significant changes 

from the Gaussian distribution are found from 0 sigma to -1 sigma. No consistent pattern is 

found comparing the PPDFs for different sound pressure levels. The centre strain location 

(SG 9) is compared with the edge gauge location (SG 10) as shown in Fig 5.16 for 
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140 dB and the 158 dB test conditions. No new consistent patterns are found in these 

comparisons. However, the patterns of the PPDFs are quite different from the previous 

cases. On the positive side more peaks are noted close to zero sigma. Fewer peaks are noted 

in the 0 to -1 sigma range and a significant increase in peaks occurs between -1 to -2 sigma. 

5.3.5    CLAMPED CFRP APWT PLATE PPDFs 

The strain major peak probability densities for five levels of excitation of the CFRP 

APWT plate are shown in Fig 5.17. For all test conditions, some shifts around zero are 

noted. Significant changes from the Gaussian distribution are found from 0 sigma to -1 

sigma. No consistent pattern is found comparing the PPDFs for different sound pressure 

levels. Larger peak concentrations are noted for values of sigma between 1 and 1.25 and - 

1.75 and -2.5. Similar patterns of the PPDFs occur for this case as for that of the aluminium 

alloy APWT plate. 

5.4    FATIGUE MODEL APPLICATION 

The terms K (a constant) and a (the slope of a straight line on a log-log graph of S-N 

data) are obtained from the S-N data for DTD 5070 aluminium alloy [ 7 p 488 ] as shown in 

Fig 5.18. The rms stress is changed to rms strain using Hooke's Law (S=Ee). For this 
20 

material K = 7.116x10   and a = - 0.2033. The stress was measured on the test specimen 

halfway between two rivets along the centre line between the rivets described in more detail 

in reference 1.   The data were obtained from cantilevered coupon specimens with transverse 

random vibratory base excitation introduced to the 'rib' specimen through a riveted joint 

with the 'skin'. The strain gauge location, stress concentrations, and boundary conditions 

greatly affect the strain level measurements. Correction factors are needed for a different set 

of conditions. 

Two other strain versus cycle curves for BS 1470-NS3 aluminium alloy were obtained 

from [ 117 Fig 8] as shown in Fig 5.19 for sinusoidal excitation of a cantilevered beam and a 
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C-C beam. As noted in the reference, failure occurred much earlier for the C-C beam than 

the cantilevered beam for the same strain level This was attributed to the influence of a 

large axial strain. These two curves together with the DTD 5070 riveted coupon curve and a 

7075-T6 aluminium alloy curve are shown in Fig 5.20. The two coupon curves are 

essentially equal. The two BS1470 (lower strength aluminium alloy) curves are different. 

The cantilevered beam slope is -0.560 and the C-C beam is -0.162. The two higher strength 

aluminium alloy curves are nearly the same with slopes of -0.203 and -0.210. This suggests 

that assuming alpha is constant for a given material, the constant K would be more sensitive 

to changes in stress concentration. This same property has been observed by Holehouse [11] 

with similar results comparing coupon data with APWT panel data. 

The fatigue life is computed for a series of test cases with different e -N curves to 

determine the damage characteristics. A cycle is defined as a response amplitude with one 

positive peak, one negative peak and two zero crossings. If the mean value is significantly 

high, then a more appropriate definition would be to define the peaks above and below the 

mean. The time to failure was computed from Eq 5.9 for the cantilevered beam single mode 

case as shown in Table 5.2. The failure time was 16.7 hours compared with 16.7 hours from 

reference 117 using only positive peaks. If the negative peaks are included, the time to 

failure is one half or 8.3 hours. The time to failure for the C-C beam case was 3.04 hours as 

shown in Table 5.3 compared with 2.53 hours from reference 117 for positive peaks. The 

negative peaks contributed little to the damage due to high axial strains shifting the mean to a 

high positive value. Using an aluminium alloy e -N curve for 7075-T6 riveted flexible 

coupon data resulted in a time to failure of 4.51 hours as shown in Table 5.4. The actual 

fatigue failure times obtained for the two tests were 5.25 and 5.29 hours. These are 

surprisingly close considering the boundary conditions and stress concentration differences. 

The slope seems to be relatively constant and independent of changes in stress 
20 

concentrations. A larger K value increases the fatigue life. Modifying K from 1.31 X 10 

to 1.50xl02°increased the fatigue life from 4.51 to 5.14 hours. Changing K to 1.70 X 10 

increased the fatigue life to 5.82 hours. Using the same slope for the 7075-T6 curve, the K 
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20 
value of 1.50x10  resulted in a time of 5.14 hours shown in Table 5.5. This is closer to the 

actual failure times than the 2.53 hours from reference 117. 

The time to failure is computed using Eq 5.12 for the C-C aluminium alloy beam 

multimodal test data as shown in Table 5.6. The failure time is 0.803 hours using both 
20 

positive and negative peaks. Modifying K to 1.70x10   increased the fatigue life to 1.05 

hours. The time to failure for the C-C-C-C aluminium shaker plate test is 0.304 hours using 
20 

the same K=l.30x10   as shown in Table 5.7. Since these last two cases were not tested until 

failure, no comparisons could be made. The predicted times to failure appear to be a little 

short in duration. The cases studied in the last two paragraphs are summarized in Table 5.8. 

5.5     DAMAGE ASSESSMENT 

The data from the tables in section 5.4 are used to determine the damage accumulation 

by plotting the PPDF/N or PPDF/N    for various sigma values (strain/sd). The results from 

two cases in reference 117 together with the 7075-T6 fatigue data are shown in Fig 5.21. 

The rms strains were approximately the same for all three cases. Larger PPDF/Nc values 

results in shorter times to failure. The damage for the single mode C-C beam case (BS1470) 

was much higher than that of the cantilevered beam. This is attributed to the large axial 

strain resulting in much higher total positive strain peaks. The single mode  C-C aluminium 

(7075) beam case produced more damage than the other two cases. The multimodal C-C 

aluminium beam case is shown in Fig 5.22. The axial strain produced more damage in the 

positive peak domain than the negative peaks. The highest values are obtained around sigma 

equal to 2. The multimodal C-C aluminium alloy shaker plate test is shown in Fig 5.23 

which is quite similar to the multimodal beam case. The axial strain produced more damage 

in the positive peak domain than the negative peaks. The highest values are obtained around 

sigma equal to 2. 
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The constants K and a were obtained from the S-N curve for DTD 5070 aluminium 

alloy [7 p 488] as shown in Fig 5.18. The rms stress (S) is changed to rms strain using 

Hooke's Law (S=Ee). Using this method K=9.77xl010 and a= - 0.2033. The stress was 

measured half way between two rivets along the centre line between the rivets on the test 

specimen. 

The cumulative damage is determined by normalising the peak probability functions 

divided by the cycles to failure (PPDF/Nc) and plotting it versus sigma. The results for the 

positive peaks for the clamped and cantilevered beam cases from reference 117 are shown in 

Fig 5.24. The normalised values show the most damage occurs between 0.5 and 3 sigma. 

Normalising provides a method for estimating the percentage of the damage. Higher damage 

is accumulated in the clamped beam case. The largest slope occurred around 1 to 2 sigma. 

Approximately 75% of the damage occurred between 0 and 2 sigma. For the cantilevered 

case, the largest slope occurred around two to three sigma with 82% of the damage in that 

range. The normalised values for the single mode cantilevered beam case result in the most 

damage occurring between 1 and 3.5 sigma. 

The same procedures were used for the multimodal C-C aluminium alloy beam and the 

C-C-C-C aluminium alloy shaker plate tests at high levels of excitation as shown in Fig 5.25. 

More damage occurs with the positive peaks than the negative peaks. For the same beam, 

approximately 37% of the damage occurred between -2.4 and -1 sigma with the remaining 

damage occurring between 1 to 3 sigma. Little or no damage occurred between -1 and +1 

sigma. Similar results are obtained with the clamped aluminium alloy shaker plate. 

Approximately 39% of the damage occurred over a similar negative sigma range with the 

remaining damage occurring in a similar positive sigma range. 

A curve-fitting routine was used to determine a mathematical function for the high level 

PPDF for the clamped shaker plate from Fig 5.11. The most important part of the fit is 

outside the range of -1 to 1 sigma, since most of the damage accumulation occurs outside 

this range. A partial listing of the functions and their goodness of fit are rank ordered 
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accordingly in Table 5.9. The highest ranking function is a tenth order polynomial followed 

by ninth and eighth order polynomial fits.  The goodness of fit from 1 to 14 range from 

0.9775 to 0.9625, which are very close statistically.  The tenth order polynomial shown in 

Fig 5.26 is, 

y=a+bx+cx2+dx3+ex4+fx3+gx6+hx7+ix8+jx9+kx10 (5.13) 

where a=0.346, b=-0.0148, c=-0.137, d=-0.054, e=0.090, f=0.043, g=-0.0400, h=-0.00976, 

i= 0.00722, j=6.85xl0"\ k=-4.36xlOJ*. Ranked fourteenth is a natural logarithmic function 

as shown in Fig 5.28. The function and its coefficients are, 

In y=a+bx+cx2+dx3+ex4+fx5 (5.14) 
where a=-1.088, b=-0.1191, c=-0.1.302, d=0.0104, e=-0.0653, and f=0.0079. The function 

fits the test data similar to the tenth order polynomial and may be easier to use. 

Ranked forty-first is a Gaussian function as shown in Fig 5.27. The function and its 

coefficients are, 

y=a+bexp{-0.5[(x-c)/d]2} (5.15) 

where a=-0.0968, b=0.4485, c=-0.050 and d=1.45. The function fits better for sigma values 

of 2 or greater than those of -2 sigma and greater. This is due to the axial strains shifting the 

peaks to higher positive values. A constant coefficient is used to fit the Gaussian function to 

permit shifting the function to fit the test data. This equation can be used to replace the 

Rayleigh equation to determine multimodal fatigue damage for clamped plates by 

substituting eq 5.15 into Eq 5.12, 

a + bexp{-0.5[(x-c)/dj2 f 
Nt=- ./Lm4 

3600fcJ (5.16) 
[K/(sd)]a 

where a=-0.0968, b=0.4485, c=-0.050 and d=1.45. Using only the positive values of the 

PPDF in the curve fitting program resulted in a natural logarithmic function ranked first as 

shown in Fig 5.28. The function and its coefficients are, 

lny=a+bx2lnx (5.17) 

where a=-1.383 and b=-0.4275. This function fits the test data more closely than that shown 

previously for the positive peaks. The positive peaks are higher than the negative peaks 

which are expected to produce more damage. 
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The equivalent cyclic multimodal frequency is needed to predict the fatigue life. 

Prediction of the linear modal frequencies is obtainable from a variety of sources. Usually 

the first mode prediction is the most accurate. The measured modal frequencies for three test 

cases were shown in Fig 5.29. The modal frequencies increase as the modal number 

increases.   The cyclic multimoda! nonlinear frequencies are studied for four test cases as 

shown in Fig 5.30. These cases are based upon the PPDFs where the peaks were counted for 

a specific time interval and from which the nonlinear cyclic multimodal frequencies are 

calculated. Generally the resonant frequencies increased with the excitation level. The 

equivalent cyclic multimodal frequencies for the two beam cases increased more rapidly than 

those for the two plate cases. Very little change was noted for the plate cases. 

5,6     SUMMARY 

A multimodal model is suggested extending the single mode model to include the third 

and fifth modes. Further development is needed to estimate the coefficients and the third 

and fifth strain power spectral densities. The coefficients can be estimated from the 

normalised integrals across the strain spectral densities. 

Another multimodal model is suggested that extends the single model, based upon 

Miner's linear cumulative damage rule, to include more resonant response frequency peaks. 

The Rayleigh distribution function was replaced by a Gaussian function to incorporate the 

multimodal effects of plate response as shown in Eq 5.16. This function was based upon the 

PPDFs analyzed using a major peak counting technique. Appropriate e -N curves for the 

boundary conditions of the plate are needed to apply the model. A fatigue curve can be 

characterized logarithmically by a constant and the slope of a straight line. The multimodal 

frequency can be estimated by dividing the number of peaks determined from the PPDFs by 

the length of the time history. With test data, the fatigue life can be calculated using Eq. 

5.12. A number of test cases have been calculated with reasonable accuracies. For the 

clamped aluminium alloy beam and shaker tests, the most damage occurs between - 2 to -1 

sigma and between 1 and 3 sigma. 
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VI  CONCLUSIONS AND RECOMMENDATIONS 

As new materials and structural concepts evolve and are applied to aircraft, a better 

understanding of their nonlinear vibrational response and acoustic fatigue life is needed to 

prevent premature failure of these structures. New methods and techniques are needed to 

prevent expensive acoustic fatigue failures. 

A considerable amount of research work has been conducted in this field. Acoustic 

fatigue design guides have been developed for older metallic alloys, composite structures and 

older structural configurations. Acoustic fatigue life prediction methods generally include 

predicting the random acoustic loads, estimating the vibrational stress response of the structure 

and predicting the life from stress or strain versus cycles to failure curves for the material and 

fastener configuration. These are based on simplified theory and test data formulated into 

semi-empirical mathematical expressions. The predictions are based upon the assumption 

that response in the fundamental mode causes most of the damage. The importance of the 

multimodal response where several peaks in the frequency response spectrum broaden as the 

excitation level increases has been stressed by many researchers. By including the    in-plane 

stretching effect in the bending formulation, the nonlinear deflections and stresses were found to 

be much less than predicted by linear theory at the higher levels of excitation. Many of the 

analytical methods available lack validation with good experimental data. 

The literature search for studies of the nonlinear response of clamped, simply supported 

and pinned flat thin beams and clamped flat rectangular plates of both homogeneous and 

laminated materials produced many papers. Most papers introduce an in-plane strain as the 

beams and plates deflect from their initial positions. This nonlinearity is introduced by the 

force due to stretching. Many of the equations of motion reduce to the well known Duffing 

equation. The effects of the damping and the cubic nonlinearity coefficients in the Duffing 

oscillator when subjected to random excitation have been investigated. The selection of 

coefficients is the key element in the usefulness of the method. It requires a great deal of 

knowledge of the system in order to characterize the coefficients. This method and others 
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studied seem to yield approximations of the peak broadening phenomenon, but require a 

considerable amount of effort to implement. 

With this background, a study of the nonlinear behaviour of simple flat beams and plates 

was begun. Careful experiments were conducted to provide a data base to evaluate the 

nature of nonlinear structural response and its effect on predicting acoustic fatigue lifetimes. 

Linear mode shapes, nonlinear displacement shapes, frequency responses and strain 

responses were studied and measured with sinusoidal excitation. The jump phenomenon was 

observed and described for both the aluminium alloy and carbon fibre reinforced beams and 

plates. Curve fitting of nonlinear displacement shapes with mathematical functions was 

investigated using the measured data to determine which functions fit the nonlinear 

responses. The spatial derivatives of the more accurate functions found were calculated. 

The bending strains were calculated from the second derivative and compared with measured 

data. The band limited random strain and displacement responses were studied and 

compared with linear theory. Multimodal peak broadening effects in the strain frequency 

response data were also studied with increasing levels of random excitation. The 

contribution of each mode to the total multimodal response was determined. The four 

statistical moments were calculated and compared with theory and other experimental data. 

A multimodal fatigue model was developed and checked with a limited amount of fatigue 

failure data. Damage accumulation was defined and studied. The principle findings, general 

characteristics of these studies and suggestions for future studies are described in subsequent 

paragraphs. 

Beams and plates were tested using an older aluminium alloy for a baseline and an older 

carbon fibre composite material.  Newer carbon fibre beams fabricated did not remain flat. The 

more reliable carbon fibre materials were used in this study. The boundary conditions selected 

for the beam tests were clamped and pinned.  Three test methods selected were the direct shaker 

attachment method, the base excitation method on a large shaker and the acoustic progressive 

wave tube method. The boundary conditions selected for the shaker plate tests were clamped. 

The boundary conditions selected for the high intensity acoustic tests were clamped. Sine and 

band limited random excitations were used in these tests. 
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Laser vibrometer technology is growing at a rapid pace with increased capabilities to 

study nonlinear displacement shapes. Advances were made in 1991 in the scanning laser 

Doppler sensor technology. The upper velocity limit has been increased to 10 m/s which 

makes it possible to measure dynamic structural displacement shapes to very high amplitudes 

with a high degree of accuracy. The rapid scanning capability together with automatic data 

collection and display methods are particularly advantageous in measuring mode shapes and 

large amplitude surface velocities. The inherent accuracy of these sensors plus many other 

features have made the scanning laser Doppler sensor very favourable for carrying out high 

amplitude vibration measurements on beams and plates, as well as many other structures of 

interest. The scanning laser vibrometer along with proven software and hardware provides a 

powerful tool for nonlinear displacement shape analysis. Since the vibrometer output is a 

voltage indicating surface velocity, integration with respect to time yields the displacement. 

An electronic integrator (hardware) provided these data much more conveniently than using 

software. The laser Doppler sensors used provided non-contacting nonlinear high amplitude 

displacement shapes of the beams and plates with excellent accuracies. These were used to 

calculate nonlinear bending and axial strains from the smoothing functions determined from 

the raw data measured. 

The stretching effect shifted the neutral axis in the static nonlinear bending experimental 

results. This was due to the addition of an axial tensile force to the bending tensile and 

compressive components, resulting in a total strain which was larger in tension than compression. 

The stretching effect also causes a reduction in the cross-sectional areas which reduces the second 

moment of area of the cross-section. Linear theory assumes that the neutral axis is at the centre of 

the cross-sectional area and the second moment of area of cross-section is constant. It does not 

account for the reduction in the bending displacement amplitudes at high load levels. Linear 

bending theory was accurate at very low force levels, but it does not describe the nonlinear 

behaviour at the higher load levels. Nonlinear theory usually assumes that the second moment of 

area of cross-section is constant or varies as some function of length and does account for the 

reduction in the bending displacement amplitudes at high load levels. The carbon fibre beam 

static and dynamic test results were very similar to those of the aluminium alloy beam. The 
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length, width and thickness of the carbon fibre beam were the same as for the aluminium alloy 

beam, but the Young's modulus of elasticity was smaller and the mass density was considerably 

smaller. The accuracy of static bending theory decreased rapidly for displacements greater than 

34% of the beam thickness. The rule of thumb often cited in the literature of displacement up to 

50% of the beam thickness was shown to be conservative, since deviation from linear theory was 

found when the displacements were greater than 34% of the thickness. The static strain of both 

clamped aluminium and carbon fibre beams did not exhibit a nonlinear response as great as 

the dyjaamk case with sinusoidal and random excitations. This is due to the resonant 

phenomenon which amplifies the response of the beams under dynamic excitation. 

The clamped aluminium alte beam and shaker linear mode shapes were well defined and the 

mode shapes were symmetrical about the centre of the structure. They closely resembled their 

predicted shapes from linear theory except for the distorted first beam mode shape found at a 

frequency between the fourth and fifth modes. Considerable effort was devoted to determining 

the nature of this phenomenon. The shape observed was not a torsional mode of the beam nor a 

longitudinal mode of the beam The nature of the behaviour was not established but could only be 

associated with a resonance of the whole structural system Since the distorted first mode 

amplitude was relatively small, it was insignificant in the band limited random response. The 

clamped carbonfibre reinforced beam and shaker linear mode shapes were floj quite as well 

defined and symmetrical about the centre except for the first mode of the beam. The same test 

rig, clamping arrangement and axial tension were used for both types of material, however the 

linear mode shapes for carbon fibre reinforced specimens were more difficult to measure than 

those for the alumimium alloy test specimens. Considerable effort was devoted to the plate 

clamping fixture fasteners and their torque sequence and magnitude to prevent load distortion and 

prestress in the plate. The distortion in the carbon fibre reinforced structure mode shapes may be 

due to the non-homogeneous material property of the composite specimens including small voids 

in the material. The small imperfections in the composite structure linear mode shapes did not 

seem to change significantly the expected results of the band limited random tests. 
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Mathematical functions were used to fit the linear and nonlinear measured displacement 

shapes. If a mathematical function can be determined that accurately describes the nonlinear 

deflection shape, the nonlinear bending can be calculated at any point along the length of the 

beam. This can be determined by calculating the second derivatives with respect to distance 

along the length of the beam. Taking derivatives of the displacement shapes was quite 

sensitive to instrument noise and ripple effects in the raw data, since the displacement 

amplitudes were very small compared with the length of the beam. Accuracy was dependent 

upon how closely the selected curve fitting function fitted the measured data. The axial strain 

can be determined by calculating the nonlinear displacement shape function from the first 

derivative or simply by determining the amount of elongation due to stretching. The jgnje, 

nonlinear displacement shapes were compared with the functions used to characterize the 

dynamic mode shapes. Six curve fit functions were compared with the lowest force level 

displacement shape and that obtained for the highest force level. These were the logistic, 

Guassian, sine and Lorentzian functions, the classical solution and a fourth order polynomial fit, 

which yielded reasonable fits with the data. The ranking of the functions, based upon the 

whole displacement shape, for the highest force level changed from that of the lowest force 

level. This is due to the small changes in the goodness of fit which is less important than the 

maximum and the minimum curvatures, near the clamps and the centre of the beam. The 

strain calculated from the second derivative of the fourth order polynomial function at the 

clamp was the most accurate, followed closely by the classical function for both low and high 

levels of force. 

The purpose of studying the nonlinear displacement shapes was to determine the 

maximum rms stress response. The clamped aluminium alloy beam dynamic nonlinear 

displacement shapes were compared with five functions used for the dynamic mode shapes. The 

maximum strain occurred near the clamp. The strains calculated from the derivatives of the 

classical function were the most accurate near the clamps for both low and high level 

excitation. With low level excitation, the best fit expected theoretically is with the classical 

function, which is the closest to the linear case. For the nonlinear case the classical solution 

still produced excellent results. Increased accuracy was gained by curve fitting a small part 

of the data near the clamp. For this case, the classical function produced good accuracy. 
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The bending strain determined from the second derivative of the classical function was close 

to the measured value. The clamped carbon fibre beam dynamic nonlinear displacement shapes 

were compared with functions used for the dynamic mode shapes. Similar results were obtained 

as those from the clamped aluminium alloy beam tests. The shapes of the slopes and the 

curvatures of the nonlinear displacement shapes were quite similar to the clamped aluminium 

beam test data. The first coefficients for the fourth order polynomial fit were compared with 

those obtained from the aluminium alloy beam. The coefficients for structures of both materials 

increased with increasing excitation levels, but not in a linear fashion. The coefficients obtained 

from the carbon fibre reinforced beam were higher due to higher displacements. The afomjrma 

aUoy. and carbon fibre shaker dynamic nonlinear displacement shapes were curve fitted with 

fourth order polynomial functions. The strain calculated from the second derivative near the 

clamp was less than the measured strain. Many curve fitting functions approximate the nonlinear 

displacement shapes of beams and plates. Among these were the classical, sine, sine squared 

functions and the fourth order polynomial. For the clamped boundary conditions, the maximum 

strains occurred at the clamp where the curvature should be zero. The curvature of all these is 

zero at the ends of the structures, which is assumed in linear theory. Further study of these 

functions with a small amount of data near the clamp is recommended. The other functions, the 

Gaussian, logistic, and Lorentzian resulted in a good fit along almost the whole length of the 

structure, but lacked accuracy in computing the strain response near the clamp. These functions 

loose accuracy because the curvature does not approach zero at the clamp, but approaches zero 

beyond the length of the structure. These functions are not recommended for further studies of 

nonlinear clamped beam displacement shapes. 

The three constants in the classical equation were examined for the clamped aluminium 

alloy beam. The first constant significantly affects the amplitude of the curve fit but not the 

symmetry about the centre of the beam. The second constant tends to shift the peak of the 

function off centre. The third constant tends to alter the entire shape. The coefficients 

increase with increasing excitation levels as expected, since the measured amplitudes 

increased. The rate of increase of the coefficients with excitation levels did not increase 

linearly with the force excitation level. Other functions were studied to improved the 

accuracy of the second derivatives. A cosine function with another coefficient was added to 
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the sine function. Extra hyperbolic sine and sine terms multiplied by another constant were 

subtracted from the classical equation. Higher order polynomials were also investigated. All 

of these did not improve significantly the accuracy of the derivatives already studied. 

The lineai transverse bending natural frequencies for a clamped and a simply supported tam 

were calculated and compared with sine and random test resonant frequency data. The linear 

resonant frequencies theoretically are independent of the type of excitation, sine or random. For 

the first and third modes, the random test results were almost equal to the finite element method 

results for the clamped boundary condition. Since the test results were close to the theoretical 

results, the clamping fixture was considered effective in simulating the clamped boundary 

conditions. The sine test results were not quite as favourable.  The resonant frequencies were 

very sensitive to the boundary conditions, pre-tensioning and mass added to the beam. The linear 

modal frequencies for a clamped and a simply supported plate were calculated. Reasonable 

agreement was obtained comparing the first mode of the aluminium alloy shaker plate theoretical 

results with the test results. Since both the clamping frame and the test plate were of aluminium 

alloy, thermal stress was noj a factor in pretensioning the plate. The slight decrease in the 

measured results compared with theoretical values was an indication that the clamping 

arrangement was effective. The fundamental frequency was far from that associated with simply 

supported boundary conditions, but close to that for clamped boundary conditions. Reasonable 

agreement was obtained comparing the first mode of the carbon fibre shaker pjafte theoretical 

results with the test results. Since the clamping frame and the test plate were very dissimilar in 

their thermal coefficients of expansion, thermal stress was a major factor in tensioning or 

compressing the plate. Comparing the theoretical first mode natural frequency of the catkaLfibre 

Ekte used in the acoustic tests with experimental results indicated, surprisingly, an exact match. 

With sinusoidal excitation of clamped beams and plates, jump phenomena were 

observed. Bistable response occurred when the excitation amplitude was constant and the 

frequency was swept upward or downward around the fundamental resonant frequency and 

when the frequency was constant and the amplitude was increased or decreased. Chaotic 

structural behaviour was not observed with sinusoidal excitation. The fundamental resonant 

frequency range for the clamped aluminium beam was small and for the clamped carbon fibre 
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reinforced beam, slightly larger. For the clamped aluminium alloy shaker plates, the 

fundamental frequency Hfigg increased to four times that of the clamped aluminium alloy 

beam. For the carbon fibre reinforced shaker plate, the fundamental resonant frequency 

range increased to twice that of the clamped carbon fibre beam. The nonlinear frequencies 

were dependent upon the amplitude of excitation. A comparison between the aluminium 

alloy shaker plate sinusoidal response in the frequency region of the fundamental mode and 

that of the carbon fibre reinforced plate indicated a greater hardening spring nonlinearity in 

the composite plate. The jump phenomenon exhibited the characteristics of a Duffing 

oscillator with a cubic nonlinearity. Since the back-bone curve bends towards the higher 

frequency region, the behaviour observed was associated with a hardening spring 

nonlinearity. The stretching effect lowers the bending strain below the linear theoretical 

results as the axial strains increase. 

Large dynamic displacements of beams, greater than one half of the thickness, created 

high axial strains in addition to the bending strains for increasing levels of random 

excitation. The measured axial strains were low compared to the bending strains for high 

levels of random excitation for both the aluminium alloy and carbon fibre beams.  The 

stretching effect lowers the bending strain below the linear theoretical results as the axial 

strains increase.  Higher axial strains are expected for a larger length beam than those tested. 

The carbon.fibre reinforcedbeam exhibited higher axial strain responses than the aluminium 

alloy beams. This was expected since the Young's modulus for the carbon fibre material 

was slightly lower than that of the aluminium alloy material. Both clamped beams exhibited 

a slight frequency shift and peak broadening, which can be attributed to an increased 

stiffening or hard-spring nonlinearity. The randomly excited carbonJihre reinforced..shaker, 

Elite exhibited a greater number of modal response frequencies and more peak broadening 

than exhibited by the aluminium alloy shaker plate. The contribution of higher order modes 

to plate response was greater as the level of excitation increased. For high level acoustical 

excitation of both clamped aluminium alloy and carbon fibre plates, the modal resonances 

were less pronounced than for low level excitation. Higher modes than the fundamental 

were significant in the response. The carbon fibre plate exhibited more modal responses than 

the aluminium alloy plate in the same frequency range. Multimodal effects become more 
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significant at high levels of excitation. The reductions in the total strain response due to 

stretching effects have been determined experimentally.  More theoretical developments are 

needed to account for the reduction of bending strain as the axial strain increases for increasing 

transverse bending loads. Further work is needed to investigate nonlinear displacement effects 

and the nonlinear displacement-strain effects as excitation levels increase. 

Peak broadening was observed in all the dynamic tests as the excitation level increased 

from low to high. The clamped aluminium alloy shaker plate exhibited more peak 

broadening than that of the clamped aluminium alloy beam. This was attributed to the two 

dimensional effects or Poisson's effects. The carbon fibre reinforced shaker plate exhibited 

an even greater peak broadening than that of the aluminium alloy shaker plate. The 

acoustically excited carbon fibre reinforced plate exhibited less peak broadening than that of 

the acoustically excited aluminium alloy plate. The sizes of the plates affect the modal 

response frequencies and their closeness in frequency. Many more resonant frequencies 

were found with the composite plate than that found with the other test specimens. 

Normalised probability density functions were calculated from the time histories of the 

band limited random excitation force and the strain response. Both normalised peak and 

amplitude probability density functions were studied. The amplitude probability density 

function for a narrow band random signal and a wide band random signal are Gaussian 

functions. For the Guassian function large amplitude occurrences become small near plus and 

minus 3.5 sigma for reasonable time history lengths. Generally, the occurrence of the largest 

excitation force amplitudes measured were approximately plus and minus 3 sigma, although the 

input signal generators produced up to 5 sigma amplitudes. Some loss in the amplitude magnitude 

occurrences was found between the input and the electrodynamic shaker response. The largest 

normalised strain amplitude occurrences generally were found at approximately plus 3 and minus 

2.5 sigma. Some losses in the occurrence of high amplitude strain magnitudes were found, 

resulting in an amplitude probability more non-Gaussian than the excitation time histories. More 

large strain positive amplitude occurrences than large negative amplitude occurrences were found 

especially at the higher excitation levels, which is an indication that the beam response becomes 
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more nonlinear at higher excitation levels. The carbon fibre reinforced plastic structure, generally 

was more non-Guassian in its behaviour than the aluminium alloy structure. The normalised peak 

probability density function of a narrow band random signal is a Rayleigh function. The 

normalised peak probability density function of a wideband random signal is a Gaussian 

function. The largest strain positive peak occurrence measured was approximately 2.5 sigma 

and the negative peak occurrence was approximately minus 2 sigma, being neither Rayleigh 

nor Gaussian in form. The shape of the normalised Gaussian function more closely 

resembled the normalised strain peak probability function resonant response than the 

normalised Rayleigh function. A best fit Gaussian function was defined for the peak 

probability densities measured. 

An estimate of the individual resonant contributions to the total strain energy can be 

determined by integrating across the strain spectral density and normalising by dividing by the 

overall level. The beam strain at the gdgg near the clamp was the most important to consider 

since it was the highest level. Generally, the first resonance contributes the most to the overall 

level at low excitation levels and decreases as the excitation level increases. For the clamped 

aluminium alloy shaker plate test, the first resonant contribution was 82% for the low level 

excitation and 76% for the high level. The clamped carbon fibre reinforced shaker plate first 

resonant contribution varied from 96% to 90%. The clamped carbon fibre reinforced acoustic 

test plate varied from 35 to 45%, increasing as the excitation level increased. This was attributed 

to the many resonant responses in the carbon fibre shaker and acoustic plate tests. Strain location 

was important when analyzing the multimodal contributions of the overall response spectrum. 

Comparing the ggnfls gauge location integrals across the strain spectral densities for the clamped 

aluminium plate tests indicated that the first resonance contributed only 5% decreasing to 3%. 

The clamped carbon fibre acoustic plate test indicated a decrease from 50 to 30%. At the highest 

excitation level the sharp resonant peak phenomenon almost disappeared. The modal 

contributions were not very distinguishable. The response changes from that of a discrete 

resonant vibration response to some kind of forced smeared resonant response. The integrals 

across the strain spectral densities provide information for the selection of coefficients to 

determine multimodal fatigue life. 
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The strain statistical moments were calculated to determine trends in the response data. For a 

Gaussian probability density function, the mean is zero, the skewness is zero and the kurtosis is 

three. The mean values increased as the excitation level increased. This was due to the axial 

strain increasing which adds to the nonlinear bending amplitudes. More detailed information 

about the mean and skewness values was obtained from the amplitude probability density 

functions. The normalised force amplitude probability density functions were nearly Gaussian for 

most tests studied. The normalised strain amplitude probability density functions consistently 

indicated more positive amplitudes were present than negative amplitudes at high sigma values. 

A multimodal fatigue model has been developed to predict the fatigue life of aluminium 

alloy clamped plates excited randomly by shaker base excitation. The method includes 

selecting a suitable peak probability density function which was dependent upon the 

boundary conditions, strain concentrations, strain locations, and the shift in the mean value 

due to axial strain. The Rayleigh distribution function was replaced by a Gaussian function 

to incorporate the multimodal effects of plate response. A Gaussian function with four 

coefficients was determined for clamped aluminium alloy plates. This function was based 

upon the peak probability density functions analyzed using a major peak counting technique. 

The Rayleigh distribution is appropriate for a narrow band random process where one mode 

is excited. The peak probability density function for a wide band process is Gaussian. The 

multimodal model developed incorporates a Gaussian peak probability density function, 

which seems compatible with published theory. Appropriate strain versus cycles curves for 

the material and boundary conditions of the plate are needed to apply the model.   A fatigue 

curve can be characterized lograrithmically by the slope of the curve which is usually 

approximated by a straight line and the slope. The multimodal frequency can be estimated 

by dividing the number of peaks determined from the peak probability density function by 

the length of the time history in seconds. A number of test cases were calculated with 

reasonable accuracies. 

Most of the nonlinear studies indicated a hardening spring stiffness nonlinearity. Both 

static and dynamic tests conducted with increasing and decreasing loads did not produce 
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hysteresis or material nonlinearity within the measurement accuracy. No significant change 

was found in Young's modulus with strain amplitude. 

The fatigue curves in the literature consist of sinusoidally and randomly excited rms stress or 

rms strain data, Although methods to convert sinusoidal data to random exist, they are not 

considered as accurate as actually testing with random excitation. The random test methods are 

used more often to define the structural fatigue curves, since large shaker and high intensity 

random noise facilities are available. Generally, the peak to rms ratios or crest factors for random 

response fatigue data are not reported. For random rms strain data, knowledge of the crest factor 

is essential, since higher crest factor tests produce earlier fatigue failures. The crest factor can 

change from shaker to shaker or on a single shaker. The crest factor can change from one acoustic 

progressive wave tube to another or in a single acoustic progressive wave tube.  It is one of the 

parameters to select when using a shaker controller or an acoustic progressive wave tube controller 

that affects the fatigue life. There is a lack of amplitude probability density function data in the 

literature for near field jet noise, separated flow noise and shock interaction flow noise needed to 

simulate in shaker and acoustic progressive wave tube testing. Generally, it is assumed to be 

Gaussian, as well as the rms strain response. 

Most analytical methods studied require a great deal of work to implement the lengthy 

computer programs successfully or require the development of more efficient software to model 

and validate the nonlinear characteristics desired. While neither were successfully completed in 

these studies, many features and short comings became readily apparent. The test results can be 

used to validate more analytical models. Another approach is to formulate a set of empirical 

guidelines to estimate the parameters needed to predict acoustic fatigue life. Further 

development of the multimodal fatigue models and the cyclic multimodal frequencies can 

extend the application to more practical structures with flexible boundary conditions. 

Cantilevered beam coupon testing produces pure bending strain results. The ends of a beam 

must be restrained from moving in order to incorporate the axial strain effects. Base shaker 

excitation of clamped beams which incorporate the nonlinear bending effects is 

recommended for future work. More strain versus cycles to failure curves for beams, beam 
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coupons and plates are needed. Standardized methods are needed for the strain versus cycles 

to failure curves. The semi-empirical approach requires costly tests to provide the necessary 

data. Any method requires fatigue curves which can only be obtained as a result of testing. 

Further work is needed to developed the guidelines and a multimodal fatigue model. 

The following are recommendations for future studies. The reduction in the multi-modal 

total strain responses due to the stretching effects has been determined experimentally for 

clamped beams and plates. More complex structures such as skin stiffened panels can be 

modelled as plates with flexible end constraints. More theoretical developments are needed for 

flexible boundary conditions to account for the reduction of bending strain as the axial strain 

increases for increasing transverse bending loads. From these developments the maximum RMS 

strain response of more practical structures can be predicted for a given acoustic load. The multi- 

modal effect of shifting energy from the fundamental response to higher modes was demonstrated 

for high excitation levels. A mathematical model for the prediction of the RMS stress response 

that includes the effects of higher order modes was presented. The development of higher order 

modal coefficients is needed for more flexible boundary conditions. A multi-modal fatigue 

model has been developed with a modified Gaussian peak probability function. More 

development is needed to incorporate peak probability distribution functions of flexible 

structures. It is useful to use these experimental results with clearly well defined boundary 

conditions for a validation exercise for numerical approaches. 
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APPENDIX A 

APPENDIX A 
COIL CALIBRATION 

For forced vibration studies, various arrangements of voice coil and annular permanent 

magnets were available that are relatively inexpensive and have no suspension system between 

the coil and magnet assembly. This type shaker was utilized rather than a commercially 

available shakers with a rod attached to the shake table or a 'sting' attached to the beam. The 

coil and magnet from a loudspeaker were used with modifications of the coil assembly to 

attach to the beam. 

To keep the drive force in the linear range of operation, the coil position in the magnet was 

analyzed statically to determine the linear range of displacements. The coil used for the 

clamped beam tests was capped off with a stiff aluminium alloy disc. The mass was 26.3 gm 

with a coil length of 19 mm. The natural frequency was 1925 Hz, from the ring modes of the 

disc. The current was recorded simultaneously with the responses for three types of 

experiments. The three types were static tests (DC), sinusoidal tests and band limited random 

tests. The test arrangement is shown in Fig A-l. The 9.85 Kg mass was suspended by thin 

wire ropes to permit free movement for the dynamic calibration. The force transducer and coil 

were attached to the mass using machine screws. The hanging mass was blocked against the 

steel frame to prevent movement during the static tests to build up the force required. A DC 

current was applied from 0-1200 ma as shown in Fig A-2. Both forces were applied inward 

and outward from the magnet. The outward curve was linear up to 1000 ma. The inward 

curve was similar, of opposite sign, with small deviations in the 400 to 900 ma range. The 

relationship between current and force can be determined from these curves. 

The sinusoidal tests were conducted for five frequencies between 150 and 1200 Hz as 

shown in Fig A-3. The 150 and 300 Hz test data are identical and linear up to 1000 ma. The 

600,900 and 1200 Hz data are also linear up to 1000 ma. The 600,900 and 1200 Hz curves 

increase in force as the current increases, more than that of the lower frequencies. This is due 

to the disc resonant frequency contribution, which becomes larger as the frequency increases 

toward the disc resonance. This was the second disc selected, thicker than the first, that 

137 



APPENDIX A 

decreased the ring frequencies and increased the mass of the coil. Since the highest frequency 

of interest was approximately 1000 Hz, this disc was considered acceptable. 

The random test data were conducted for two frequency ranges from 10-500 and 10-1200 

Hz as shown in Fig A-4. The 10-500 Hz test data are linear up to 1200 ma, except for a slight 

variation at 600 and 800 ma. The 10-1200 Hz curve is also linear up to 1200 ma. The 10-1200 

Hz curve shows an increase in force as the current increases, more than that of the 10-500 Hz 

curve. This is due to the disc resonance frequency contribution, which becomes larger as the 

frequency increases. Since the highest frequency of interest was approximately 1000 Hz, this 

disc was considered acceptable. 

The second coil was designed and fabricated for the larger displacements needed for the 

pinned beam. It was 64.8 g and 38 mm in length with the lowest disc resonance frequency at 

1445 Hz. A DC current was applied from 0-2500 ma as shown in Fig A-5. Both forces inward 

and outward from the magnet were recorded. The outward curve is linear up to 1000 ma. The 

inward curve is the same but with an opposite sign. 

The sinusoidal tests were conducted with the longer coil for five frequencies between 150 

and 1200 Hz as shown in Fig A-6. The 150 and 300 Hz test results are identical to the previous 

sine tests and linear up to 2400 ma. The 600,900 and 1200 Hz curves are also linear up to 

2400 ma. These curves increase linearly in force as the current increases, more than that of the 

lower frequencies. This is due to the disc off resonant frequency contribution, which becomes 

larger as the frequency increases toward the disc resonance. Since the highest frequency of 

interest was approximately 1000 Hz, this disc was considered acceptable. 

The random tests were conducted for two frequency ranges from 10-1000 and 10-2000 Hz 

as shown in Fig A-7. Both curves are linear only up to 200 ma and nearly linear up to 800 ma. 

The curves are not linear from 800-5000 ma. The tests were conducted at a much higher 

current than that planned for the pinned beam test to check the full range available. This 

demonstrates the limitations in the linear performance of coil magnet arrangements. Since the 

highest current of interest was approximately 1000 ma, this was considered acceptable. 
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APPENDIX 

APPENDIX B 

TABLE OF COEFFICIENTS 
TABLE B-2.1 

Coefficients for Shapes in Chapter II Fig 2.22 
C-C Al Beam - 3rd Displacement Shapes - Runs 16,18,19,20,23,24 

y = C + ax + bx2 + ex3 4- dx4 + ex5 + f x6 + gx7 

0.053 N 0.110 N 

C=1.5321310 
a=1.79211484e-04 
b=-8.22715212e-05 
c=-3.83335898e-09 
d= 1.40499942e-09 
e=-4.79644722e-15 
f=-7.66567803e-15 
g=-4.76221611e-19 

0.170 N 

0.38072481 
-5.47066918e-05 
-2.096044126-05 
3.107198486-09 
3.68412334e-10 
-7.462528386-14 
-2.06672461e-15 
7.791495486-19 

0.23 N 

01.6413223 
a=-3.88749739e-06 
b=-8.82004536e-05 
c=4.26603708e-09 
d=1.53716695e-09 
e=-1.97141394e-13 
f=-9.11378594e-15 
g=2.58123829e-18 

0.27 N 

0.51935807 
1.264156326-04 
-2.869108346-05 
-6.339645216-09 
5.15720970c-10 
1.77177478e-13 
-3.13893450e-15 
-2.58627820e-18 

0.30 N 

C=l.1523716 
a=1.54486312e-04 
b=-6.07732224e-05 
c=-5.36977712e-09 
d=9.76895890e-10 
6=9.93394318e-14 
f=-4.47772974e-15 
g=-l.635260396-18 

0.78233449 
-2.511501016-05 
-4.29423017e-05 
5.12912235e-09 
7.60357533e-10 
-2.313376726-13 
-4.468522526-15 
3.11673419e-18 
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APPENDIX C 

APPENDIX C 
TABLES OF CURVE FITTING FUNCTIONS AND COEFFICIENTS 

FOR CHAPTER IV 

TABLE C-4.1 
CURVE FITTING FUNCTIONS 

STATIC BENDING TESTS C-C AL BEAM 25 NEWTON FORCE 
Partial Listing 

Rank Goodness of Fit Function 
1 0.9958900428 y=a+b*4n/(l+n)2 n=exp(-(x-c)/d) [Logistic] 
2 0.9958026288 y=a+bexp(-0.5((x-c)/d)2) [Gaussian] 
3 0.9957983374 y=a+b/(l+((x-c)/d)2) [Lorentzian] 
4 0.9955376937 y=a+bexp(-0.5((x-c)/d)2) [Gaussian] 
5 0.9954418401 y0.5=(a-K:x+ex2)/(l+bx+dx2+fx3) 
6 0.9951328460 y0.5=(a+cx+ex2)/(l+bx+dx2) 
7 0.9949202615 y=a+bsin(2px/d+c) [Sine] 
8 0.9949202615 y=a+bsin2(2px/d+c) [Sine2] 
9 0.9949057149 y=(a+cx+ex2)/(l+bx-Kix2) 
10 0.9943360535 y=a+b*4n/(l+n)2 n=exp(-(x-c)/d) [Logistic] 
11 0.9929319410 y=a+bsin(2px/d+c) [Sine] 
12 0.9927231060  y0.5=a+bx+cx2 
13 0.9925902485 y=a+berfc(((x-c)/d)2) [Erfc Peak] 
14 0.9924907551 y=a+berfc(((x-c)/d)2) [Erfc Peak] 
15 0.9924710258 y=a{cosh(bx)-cos(bx)-c[sinh(bx)-sin(bx)]} 
16 0.9923140624 Iny=a+bx3+cx0.5 
17 0.9921790932 y=(a+cx+ex2)/(l+bx+dx2+fx3) 
18 0.9921428385 Iny=a+bx2.5+cx0.5 
19 0.9918436447 y0.5=a+bx+cx2+dx3 
20 0.9904023524 y=a+bx+cx2+dx3+ex4 
21 0.9894567326 lny=a+bx+cx2 
22 0.9891521075 y=(a+cx+ex2+gx3)/(l+bx+dx2+fx3) 
23 0.9880926934 Iny=a+bx2+cx0.5 
24 0.9877476316 lny=a+bx+cxl.5 
25 0.9876287867 y=a+bx+cx2+dx2.5+ex3 
27 0.9852880171 lny=a+bx+cx2.5 
28 0.9833246584 lny=(a-K:x+ex2)/(l+bx+dx2) 
29 0.9821824944 y=a+bx+cxl.5+dx2.5-K>x3 
30 0.9786834154 lny=a+bxl.5+cx0.5 
31 0.9785193472 lny=a+bxl.5+cx2 
32 0.9778716727 y=a+b/lnx-K:/(lnx)2+d/(lnx)3+e/(lnx)4+f/(lnx)5 
33 0.9771216925 y=a+bx2+cx2.5-Klx3 
34 0.9764009717 y=a+bx+cxl.5+dx2+ex3 
35 0.9760343547 lny=a+bx+cx3 
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APi-SNDIX C 

Table C-4.1 continued 

36 0.9717929422 y=a+bx-K*1.5-Klx2+ex2.5 
37 0.9666323537 y0.5=(a-t-cx)/(l+bx^-dx2) 
38 0.9650501293 y=a+bx+cx2.5+dx3+ex0.5 
39 0.9615817613 lny=a+bxl.5+cx2.5 
40 0.9610885696 lny=a+bx+cx0.5 
41 0.9610801108 y=a+bxl.5+cx2.54dx3 
42 0.9584042596 y=a+bx+cx2-Kix3+exQ.5 
43 0.9554425374 y=a+bx+cx2.5+dx3+ee-x 
44 0.9550153908 y=a+bx-K»2+dx2.5+ex0.5 
45 0.9519104676 y=a+bexp(-exp(-((x-c)/d))-((x-c)/d)+l) [ExtrVal] 
46 0.9510161234 y=*+bx-*cxl.5+dx34ex0.5 
47 0.9500919997 y=a+bxl.5-i-cx2+dx3 
48 0.9495418795 y=a+bx+cx 1.5+dx2.5-f-ex0.5 
49 0.9491635713 y=(a+cx+ex2+gx3)/(l+bx+dx2+fx3+hx4) 
50 0.9490009985 y=a-s-bx+cx2+dx3+ee-x 
51 0.9483539538 y=a+bx+cxl.5+dx2+ex0.5 
52 0.9477255119 y=a+bx+cxl.5+dx0.5+ee-x 
53 0.9471990227 y=a+bx+cxl.5+dx0.5 
54 0.9467676976 y=a+bx+cx2+dx2.5+ee-x 
55 0.9450572147 y=a+bxl.5-K:x2+dx2.5 
56 0.9431203084 y=a+bx+cxl.5+dx2+ee-x 
57 0.9423932553 y=a-fbx-s-cxl.5-fdx2.5+ee-x 
58 0.9421163122 y=a+hx+cxl.5+dx3+ee-x 
59 0.9421092964 y=a+bx+cxl.5+de-x 
60 0.9413849137 y=a+bx-fcx2-klx0.5-i-ee-x 
61 0.9412765983 y=a+bx+cx2+de-x 
62 0.9397265949 y=a+bexp(-0.5(ln(x/c)/d)2) [Log-Normal] 
63 0.9394000448 y0.5=a+bx+cx2+dx3+ex4 
64 0.9391435384 y=a-s-bx+cx2+dx0.5 
65 0.9384195943 lny=a+bxl.5+cx3 
66 0.9347896360 y=a-i-bx+cx2.5-K!x0.5+ee-x 
67 0.9345945334 y=a+bx2.5-fexQ.5-Kte-x 
68 0.9334877928 y=a+bx2+cx0.5+de-x 
69 0.9310494573 y=a+bx+cx2.5-ktx3 
70 0.9287606290 y=a+bx+cxl.5-Klx2 
71 0.9284056073 y=a+bx+cx3+dx0.5+ee-x 
72 0.9274072390 y=a+bx+cx2.5+de-x 
73 0.9257926048 y=a+bxl.5+cx2+dc-x 
74 0.9256361700 y=a+bx3+cx0.5-Hie-x 
75 0.9254857358 y=a+bxl.5+cx2-fdx0.5 
76 0.9251821567 y=a+bxl.5+cx2 
77 0.9242444796 Iny=a+bx2+cx2.5 
78 0.9236789658 y=a+bx+cx2+dx2.5 
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TABLE C-4.2 
CURVE FITTING FUNCTIONS 

STATIC KENDING TESTS C-C AL BEAM 13.8 NEWTON FORCE 
Partial Listing 

Rank Goodness of Fit Function 
1 0.9971217001 y=a+bexp(-0.5((x-c)/d)2) [Gaussian] 
2 0.9971189724 y=a+bsin(2px/d+c) [Sine] 
3 0.9971189724 y=a+bsin2(2px/d+c) [Sine2] 
4 0.9970019433 y0.5=(a+cx-s-ex2)/( 1 +bx+dx2) 
5 0.9967913645 y=a+b*4n/(l+n)2 n=exp(-(x-c)/d) [Logistic] 
6 0.9963925837 y=a {cosh(bx)-cos(bx)-c[sinh(bx)-sin(bx)]} 
7 0.9963288625 y=a+b/(l+((x-c)/d)2) [Lorentzian] 
8 0.9958512082 y=a+berfc(((x-c)/d)2) [Erfc Peak] 
9 0.9958485416 y0.5=(a+cx+ex2)/(l+bx+dx2+fx3) 
10 0.9957721533 y0.5=a+bx-f-cx2 
11 0.9956462644 y0.5=a+bx+cx2+dx3 
12 0.9954495528 y=a+bexp(-0.5((x-c)/d)2) [Gaussian] 
13 0.9953724969 y=a+bx-fcx2+dx3+ex4 
14 0.9952928421 y=(a+cx+ex2)/( 1 +bx+dx2) 
15 0.9950006937 y=a+berfc(((x-c)/d)2) [Erfc Peak] 
16 0.9932787818 y=(a+cx+ex2)/( 1 +bx+dx2+fx3) 
17 0.9932376619 Iny=a+bx3+cx0.5 
18 0.9928679897 Iny=a+bx2.5+cx0.5 
19 0.9927104340 y=(a+cx+ex2+gx3)/( 1 +bx+dx2+fx3) 
20 0.9924635782 y=a+bsin(2px/d+c) [Sine] 
21 0.9923433697 y=a+b*4n/(l+n)2 n=exp(-(x-c)/d) [Logistic] 
22 0.9916757313 y=a+bx+cx2+dx2.5+ex3 
23 0.9911029326 lny=(a+cx+ex2)/( 1+bx+dx2) 
24 0.9895978149 lny=a+bx+cx2 
25 0.9883733160 Iny=a+bx2+cx0.5 
26 0.9879105224 lny=a+bx+cxl.5 
27 0.9870902438 y=a+bx+cx 1.5+dx2.5+ex3 
28 0.9861977838 y=(a+cx+ex2+gx3)/( 1 +bx+dx2+fx3+hx4) 
29 0.9849547554 lny=a+bx+cx2.5 
30 0.9845617991 y=a+bx2+cx2.5+dx3 
31 0.9839134047 y=a+b/lnx+c/(lnx)2+d/(lnx)3+e/(lnx)4+f/(lnx)5 
32 0.9821434906 y=a+bx+cx 1.5+dx2+ex3 
33 0.9795887459 y=a+b/(l+((x-c)/d)2) [Lorentzian] 
34 0.9782149567 y=a+bx+cx 1.5+dx2+ex2.5 
35 0.9779571025 lny=a+bxl.5+cx0.5 
36 0.9771393517 lny=a+bxl.5+cx2 
37 0.9749288488 lny=a+bx+cx3 
38 0.9723485757 y=a+bx+cx2.5+dx3+ex0.5 
39 0.9707677902 y=a+bx 1.5+cx2.5+dx3 
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Table C-4.2 continued 

40 0.9664720215 
41 0.9639754551 
42 0.9635586548 
43 0.9613693593 
44 0.9610053668 
45 0.9598609459 
46 0.9586950121 
47 0.9586207834 
48 0.9581757249 
49 0.9579663223 
50 0.9578551673 
51 0.9577850893 
52 0.9570664859 
53 0.9564914978 
54 0.9562608509 
55 0.9531289544 
56 0.9523069558 
57 0.9518955948 
58 0.9518189010 
59 0.9516926871 
60 0.9516409679 
61 0.9513810775 
62 0.9499898445 
63 0.9453017031 
64 0.9449919625 
65 0.9435975601 
66 0.9432363603 
67 0.9411307680 
68 0.9391125614 
69 0.9385535610 
70 0.9374691370 
71 0.9369476711 
72 0.9368740167 
73 0.9367694679 
74 0.9367652581 
75 0.9367534773 
76 0.9363484632 
77 0.9363484629 
70 0.9352111030 
79 0.9344914837 
80 0.9342189798 
81 0.9336952565 
82 0.9333673066 

y=a+bx+cx2-klx3+ex0.5 
y=a+bx+cx2.5+dx3+ee-x 
y=a+bx-K;x2+dx2.5+ex0.5 
y0.5=(a+cxy(l+bx-fdx2) 
a+bxl.5+cx2+dx3 
y=a+bx+cx 1.5+dx3+ex0.5 
y=a+bx+cxl.5-Kk2.5+ex0.5 
lny=a+bxl.5+cx2.5 
y=a+bx+cx2+dx3+ee-x 
lny=a+bx-s-cx0.5 
y=a+bx-s-cx 1.5+dx0.5+ee-x 
y=a+bx+cxl.5+dx2+ex0.5 
y=a+bx+cxl.5+dx0.5 
y=a+bxl.5+cx2+dx2.5 
y=a+bx+cx2+dx2.5+ee-x 
y=a+bx-s-cx 1.5+dx2-fee-x 
y=a+bx+cxl.5+dx2.5+ee-x 
y=a+bx+cx 1.5+dx3-i-ee-x 
y=a+bx+cxl.5+de-x 
y=a+bx+cx2+dx0.5+ee-x 
y=a+bx+cx2+de-x 
y=a+bexp(-exp(-((x-c)/d))-((x-c)/d)+l)[ExtrVal] 
y=a+bx+cx2+dx0.5 
y=a+bx+cx2.5+dx0.5+ee-x 
y=a+bx2.5+cx0.5+de-x 
y=a+bx+cx2.5+dx3 
y=a+bx2+cx0.5+de-x 
y=a+bx+cxl.5+dx2 
y=a+bx+cx3+dx0.5+ee-x 
y=a+bx+cx2.5+de-x 
y=a+bx 1.5+cx2+dx0.5 
y=a+bx 1.5+cx2+de-x 
y=a+bexp(-0.5(ln(x/c)/d)2) [Log-Normal] 
y=a+bx3+cx0.54-de-x 
y=a+bxl.5+cx2 
y=a+bx-s-cx2+dx2.5 
y=a+bx+cx2+dx3 
y=a+bx+cx2 
y=a+bx+cx2.5+dx0.5 
y0.5=a+bx+cx2+dx3+ex4 
y=a+bx+cx 1.5+dx2.5 
lny=a+bxl.5+cx3 
y=a+bx+cx2.5 

150 



APPENDIX C 

TABLE C-4.3 

C-C Al Beam - 1st Displacement Shapes - Rues 11,12,14,15,17,11 

Coefficients for Displacement Shapes in Fig 4.26 

y = C + ax + bx2 + ex3 + dx4 + ex5 + fx6 + gx7 

0.086 N 0.09 N 0.17 N 

c= 0.38072481 0.51935807 0.78233449 
a = -5.47066918e-05 1.26415632e-04 -2.51150101e-05 
b = -2.09604412e-05 -2.86910834e-05 -4.29423017e-05 
c = 3.10719848e-09 -6.33964521e-09 5.12912235e-09 
d = 3.68412334e-10 5.15720970e-10 7.60357533e-10 
e = -7.46252838e-14 1.77177478e-13 -2.31337672e-13 
f = -2.06672461e-15 -3.13893450e-15 -4.46852252e-15 
g = 7.79149548e-19 -2.58627820e-18 3.11673419e-18 

0.40 N 

C= 1.1523716 
a=l.54486312e-04 
b=-6.07732224e-05 
c=-5.36977712e-09 
d=9.76895890e-10 
e=9.93394318e-14 
g=-4.47772974e-15 
h=-1.63526039e-18 

0.48 N 

1.5321310 
1.79211484e-04 

-8.22715212e-05 
-3.83335898e-09 
1.40499942e-09 

-4.79644722e-15 
-7.66567803e-15 
-4.7622161 le-19 

0.60 N 

1.6413223 
-3.88749739e-06 
-8.820O4536e-05 
4.26603708e-09 
1.53716695e-09 
-1.97141394e-13 
-9.11378594e-15 
2.58123829e-18 
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TABLE C-4.4 

C-C Al Beam - 1st Displacement Shapes - Rims 11,12,14,15,17,18 

Coefficients for Displacement Shapes in Fig 4.29 

y = C + ax 4- bx2 + ex3 + dx4 

0.086 N 

C=0.37754706 
a=-4.10821742e-05 
b=-1.93481073e-05 
c=1.09645527e-09 
d=2.51653541e-10 

0.09N 

0.51502419 
1.05252996e-04 

-2.6412577le-05 
-2.629170956-09 
3.44688648e-10 

0.17 N 

C= 0.77584827 
a=7.15210886e-06 
b=-3.9587955 le-05 
c=-1.254236226-10 
d=5.12745826c-10 

0.40N 

1.1455797 
1.47092740e-04 
-5.73119833e-05 
-3.65614421e-09 
7.25097248e-10 

0.48 N 0.60 N 

C=1.5199174 
a=1.87498558e-04 
b=7.614311056-05 
c=-4.69703918e-O9 
d=9.66388880e-10 

1.6278453 
2.91810443e-05 
-8.127155156-05 
-5.793698186-10 
1.02882533e-O9 
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TABLE C- 4.5 
CURVE FITTING FUNCTIONS - SINE EXCITATION 

C-C AL BEAM, Rlstl 1,0.086 Newton 
Partial Listing 

i Eifflstisa 
1 0.9998652833 y=a+bsin(2px/d+c) [Sine] 
2 0.9998652833 y=a+bsin2(2px/d+c) [Sine2] 
3 0.9998576525 y0.5=(a+cx+ex2)/( 1 +bx+dx2) 
4 0.9998199530 y0.5=(a+cx+ex2)/(l+bx-klx2+fx3) 
5 0.9994199892 y=a+bx+cx2+dx3+ex4 
6 0.9993594340 y0.5=a+bx+cx2 
7 0.9993359211 y=a+bexp(-0.5((x-c)/d)2) [Gaussian] 
8 0.9992222646 y=a {cosh(bx)-cos(bx)-c[sinh(bx)-sin(bx)]} 
9 0.9991062370 y=a+berfc(((x-c)/d)2) [Erfc Peak] 
10 0.9988953079 y0.5=a+bx+cx2+dx3 
11 0.9988351832 y=a+b*4n/(l+n)2 n=exp(-(x-c)/d) [Logistic] 
12 0.9983638483 y=a+berfc(((x-c)/d)2) [Erfc Peak] 
13 0.9982308835 y=a+b/(l+((x-c)/d)2) [Lorentzian] 
14 0.9976219358 y=(a+cx+ex2)/( 1 +bx+dx2) 
15 0.9974685105 y=a+bx+cx2+dx3+ex4 
16 0.9967541563 y=a+bexp(-0.5((x-c)/d)2) [Gaussian] 
17 0.9957659676 y=(a+cx+ex2+gx3)/( 1 +bx+dx2+fx3) 
18 0.9957359917 y=a+bx+cx2+dx2.5+ex3 
19 0.9953811913 y=(a+cx+ex2+gx3)/(l+bx+dx2+fx3+hx4) 
20 0.9945599183 y=(a+cx+ex2)/( 1 +bx+dx2+fx3) 
21 0.9930960334 Iny=a+bx2.5+cx0.5 
22 0.9928108239 Iny=a+bx3+cx0.5 
23 0.9920130040 y=a+b*4n/(l+n)2 n=exp(-(x-c)/d) [Logistic] 
24 0.9915466713 y=a+bx+cxl.5+dx2.5+ex3 
25 0.9894022574 lny=a+bx+cx2 
26 0.9886755263 Iny=a+bx2+cx0.5 
27 0.9877867969 lny=a+bx+cxl.5 
28 0.9866614430 y=a+bx+cx 1.5+dx2+ex3 
29 0.9854075233 y=a+bsin(2px/d+c) [Sine] 
30 0.9849569400 y=a+bx2+cx2.5+dx3 
31 0.9844544988 lny=a+bx+cx2.5 
32 0.9826164375 y=a+bx+cxl.5+dx2+ex2.5 
33 0.9782497081 lny=a+bxl .5+cx0.5 
34 0.9776221034 lny=a+bxl.5+cx2 
35 0.9744155610 y=a+b/(l+((x-c)/d)2) [Lorentzian] 
36 0.9740483812 lny=a+bx+cx3 
37 0.9706824452 y=a+bx+cx2.5+dx3+ex0.5 
38 0.9690437024 y=a+bx 1.5+cx2.5+dx3 
39 0.9631592871 y=a+bx+cx24dx3+ex0.5 
40 0.9614601643 y=a+bx+cx 1.5+dx0.5+ee-x 
41 0.9602035416 lny=a+bx 1.5+cx2.5 
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Table C-4.5 continued 

42   0.9600841223 y=a+bx+cx2+dx2.5+ex0.5 
43   0.9598935293 Iray=a+bx+cx0.5 
44   0.9585781350 y=a+bxl.5+cx2+dx3 
45   0.9584354425 y0.5=(a+cx)/( 1 +bx+dx2) 
46   0.9544863706 y=a+bx 1.5+cx2+dx2.5 
47   0.9543252810 y=a+bx+cx 1.5+dx2+ex0.5 
48   0.9541740831 y=a+bx+cx 1.5+dx3+ex0.5 
49   0.9539594731 y=a+bx+cxl .5-f-dx2.5+ex0.5 
50   0.9539576147 y=a+bx+cx 1.5+dx0.5 
51   0.9514122911 y=a+bx+cx2+dx0.5+ee-x 
52   0.9512130835 y=a+bx+cx2+dx0.5 
53   0.9510273323 y=a+bx+cx2.5+dx3+ee-x 
54   0.9463711773 y=a+bx+cx 1.5+dx2+ee-x 
55   0.9458836868 y=a+bexp(-exp(-((x-c)/d))-((x-c)/d)+l)[ExtrVal] 
56   0.9443225439 y=a+bx+cx2+dx3+ee-x 
57   0.9442877887 y=a+bx+cx2+dx2.5+ee-x 
58    0.9442317113 y=a+bx+cx2+de-x 
59   0.9426174041 y=a+bx+cxl.5+dx2 
60   0.9416296133 y=a+bx+cx2.5+dx3 
61    0.9414238238 y=a+bx+cx 1.5+dx2.5+ee-x 
62   0.9404031325 y=a+bx 1.5+cx2+de-x 
63   0.9402499806 y=a+bx 1.5+cx2+dx0.5 
64   0.9399314463 y=a+bx 1.5+cx2 
65   0.9384586024 y=a+bx+cx2.5+dx0.5+ee-x 
66   0.9384177350 y=a+bx+cx2.5+de-x 
67   0.9372697084 y=a+bx+cx 1.5+dx3+ee-x 
68   0.9369317072 !ny=a+bxl.5+cx3 
69   0.9366830501 y=a+bx+cx2.5+dx0.5 
70   0.9363668065 y=a+bx+cx2+dx2.5 
71    0.9349139044 y=a+bx+cx2+dx3 
72   0.9348058913 y=a+bx+cx 1.5+dx2.5 
73   0.9345243388 y=a+bx+cx2.5 
74   0.9341510613 y=a+bx+cx2 
75   0.9280155499 y=a+bx+cxl.5+dx3 
76   0.9248423408 y=a+bx+cx 1.5+de-x 
77   0.9245235432 y=(a+cx+ex2+gx3+ix4)/( 1+bx+dx2+fx3+hx4+jx5) 
78   0.9244491660 y=a+bx+cx3+dx0.5+ee-x 
79   0.9240225888 Iny=a+bx2+cx2.5 
80   0.9231203969 y-l=a+bx3+c/x0.5 
81   0.9224897198 y=a+bxl.5+cx2.5+dx0.5 
82   0.9200629574 y=a+bx3 +cx0.5+de-x 
83   0.9173361890 y=a+bx+cx3+de-x 
84   0.9169029325 y=a+bx+cx3+dx0.5 
85   0.9166494114 y=a+bx2.5+cx0.5+de-x 
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TABLE C - 46 
CURVE FITTING FUNCTIONS - SINE EXCITATION 

C-C AL BEAM, Rlstl8s 0.60 Newton 
Partial Listing 

Eaok Goodness of Fit Bmction 
1 
2 
3 
4 
5 
6 
7 
8 
9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 

^27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 

0.9997580369 
0.9996610568 
0.9996610568 
0.9996239917 
0.9993921247 
0.9991208055 
0.9986767960 
0.9981162938 
0.9977115261 
0.9954143778 
0.9927382164 
0.9923566400 
0.9904141669 
0.9896573869 
0.9859434735 
0.9834197775 
0.9818464054 
0.9794743435 
0.9782158529 
0.9781473464 
0.9767724889 
0.9753635354 
0.9739822273 
0.9737544699 
0.9720030338 
0.9712689767 
0.9712275542 
0.9712158444 
0.9686580102 
0.9686201462 
0.9684992123 
0.9684970274 
0.9683281149 

y=a+bx+cx2+dx3-fex4 
y=a-i-bsin2(2px/d-k;) [Sine2] 
y=a+bsin(2px/d+c) [Sine] 
y=a {cosh(bx)-cos(bx)-c[sinh(bx)-sin(bx)]} 
y=a+berfc(((x-c)/d)2) [Erfc Peak] 
y=a+bexp(-Q.5((x-c)/d)2) [Gaussian] 
y=a+b*4n/(l+n)2 n=exp(-(x-c)/d) [Logistic] 
y=a+b/(l+((x-c)/d)2) [Lorentzian] 
y=a+bx-f-cx2+dx2.5+ex3 
y=a+bx+cx 1.5+dx2.5+ex3 
y=a+bx+cx 1.5+dx2+ex3 
y=a+berfc(((x-c)/d)2) [Erfc Peak] 
y=a+bx+cx 1.5-Klx2+ex2.5 
y=a+bx2+cx2.5+dx3 
y=a+bx+cx2.5+dx3+ex0.5 
y=a+bsin(2px/d+c) [Sine] 
y=a-fbx+cx2+dx3+ex0.5 
y=a+bx+cx2+dx2.5+ex0.5 
y=a+bxl.5+cx2.5+dx3 
y=a+bx-f-cx2.5+dx3+ee-x 
y=a+bx-f ex 1.5+dx3+ex0.5 
y=a+bx+cxl.5+dx2.5+ex0.5 
y=a+bx+cx 1.5+dx2+ex0.5 
y=a+bx+cx2-Hix3+ee-x 
y=a+bx+cx2+dx2.5+ee-x 
y=a+bx+cxl.5+dx0.5+ee-x 
y=a+bx+cx 1.5+dx0.5 
y=a+bx 1.5+cx2+dx3 
y=a+bx+cxl.5+dx3+ee-x 
y=a+bx+cx 1.5+dx2+ee-x 
y=a+bx+cxl.5+dx2.5+ee-x 
y=a+bx+cx 1.5+de-x 
y=a+bx 1.5+cx2+dx2.5 

0.966491459 1 y=a+bx+cx2+dx0.5+ee-x 
0.9662626991   y=a+bx+cx2+de-x 
0.9647128240  y=a+bx+cx2+dx0.5 
0.9617053405   y=a+bx+cx2.5+dx0.5+ee-x 
0.9615226694  y=a+bx2.5+cx0.5+de-x 
0.9611163871   y=a+bx2+cx0.5+de-x 
0.9589257280  y=a+bx4cxl.5+dx2 
0.9588690280  y=a+bx+cx2.5+dx3 
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Table C-4.6 continued 

42 0.9572607574 
43 0.9567684078 
44 0.9564761192 
45 0.9559348074 
46 0.9556482334 
47 0.9551774439 
48 0.9551669889 
49 0.9549982718 
50 0.9549596248 
51 0.9546640500 
52 0.9545962303 
53 0.9543123415 
54 0.9538259408 
55 0.9509713574 
56 0.9501813813 
57 0.9466769660 
58 0.9447349692 
59 0.9439204911 
60 0.9439155086 
61 0.9427360909 
62 0.9392726692 
63 0.9388322324 
64 0.9372909032 
65 0.9367825843 
66 0.9358081387 
67 0.9331013801 
68 0.9314031506 
69 0.9271309894 
70 0.9222980152 
71 0.9218932548 
72 0.9194917182 
73 0.9180005502 
74 0.9089357714 
75 0.9050737265 
76 0.8992666347 
77 0.8877640477 
78 0.8852063006 
79 0.8781081195 
80 0.8464543179 
81 0.8398065049 
82 0.8134185425 
83 0.7850485519 
84 0.7588038036 
85 0.7498332514 

y=a+bx+cx3+dx0.5+ee-x 
y=a+bx+cx2.5+de-x 
y=a+bx 1.5-fcx2-Hte0.5 
y=a+bx3-s-cx0.5+de-x 
y=a+bx+cx2-Kix2.5 
y=a+bx+cx2.5+dx0.5 
y=a+bx 1.5+cx2+de-x 
y-a+bxl.5+cx2 
y=a+bx+cx2+dx3 
y=a+bx-f-cx2 
y=a+bx+cx 1.5+dx2.5 
y=a+bx+cx2.5 
y=a+bexp(-0.S((x-c)/d)2) [Gaussian] 
y=a+bx+cx 1.5-s-dx3 
y=a+bx 1.5-H;x0.5+de-x 
y=a+bxl.5+cx2.5+dx0.5 
y=a+bx+cx3+dx0.5 
y=a+bx+ex3+de-x 
y=a+bx+cx3 
y=a+b*4n/(l+n)2 n=exp(-(x-c)/d) [Logistic] 
y=a+bxl.5-s-cx2.5+de-x 
y=a+bx2+cx2.5+dx0.5 
y=a+bxl.5+cx3+dx0.5 
y=a+b/(l+((x-c)/d)2) [Lorentzian] 
y=a+bx+cxl.5 
y=a+bxl.5+cx2.5 
y=a+bx2+cx3+dx0.5 
y=a+bx2.5+cx3+dx0.5 
y=a+bx 1.5+cx3+de-x 
y=a+bx+cx0.5+de-x 
y=a+bx3+cx0.5 
y=a+bx2+cx2.5+de-x 
y=a+bx2.5+cx0.5 
y=a+bxl.5+cx3 
y=a+bx2+cx3+de-x 
y=a+bx2+cx2.5 
y=a+bx2+cx0.5 
y=a+bx2.5+cx3+de-x 
y=a+bx2+cx3 
y=a+bxl.5+cx0.5 
y=a+bexp(-0.5(ln(x/c)/d)2) [Log-Normal] 
y=a+bx2.5+cx3 
y=a+bx-s-cx0.5 
y=a+bexp(-exp(-((x-c)/d))-((x-c)/d)+l)[ExtrVal] 
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TABLE C-4.7 
C-C CFRP BEAM - 1st Displacement Shapes - Runs 1-6,2314 

Coefficients for Shapes in Fig 4.52 
y = C + ax + bx2 + ex3 + dx4- 

0.05 N 
C= 0.53495494 
a=8.34808515e-05 
b=-2.73201982e-05 
c=-2.01157430e-09 
d=3.6388330Oe-10 

0.17 N 
1.2316742 

-2.47798695e-04 
-6.33232085e-05 
7.34163042e-09 
8.37968056e-10 

0.33N 
1.8345192 

-4.37880395e-04 
-9.40954545e-05 
1.27819476e-08 
1.23788958e-09 

0.78 N 
C=2.8277680 
a=-8.45034026e-04 
b=-1.43514640e-04 
c=2.36327168e-08 
d=1.86417621e-09 

1.04 N 
3.2241330 
-9.86520532e-04 
-1.62548857e-04 
2.72667752e-08 
2.09455194e-09 

1.26 N 
3.4965679 
-1.11658164e-03 
-1.75308403e-04 
3.08939804e-08 
2.24402750e-09 

1.51 N 
C=3.7472703 

a=-1.24547019e-03 
b=-1.87146083e-04 

c=3.43851360e-08 
d=2.38531802e-09 

y = C + ax + bx2 + ex3 + dx4 

0.053 N 
C= 1.5994920 
a=9.64964167e-05 
b=-6.07313048e-05 
c=-1.89133025e-09 
d=5.53022318e-10 

TABLE C-4.8 
P-P Al Beam - 1st - Runs 34-37,40,41,43 

Coeficients for Shapes in Fig 4.55 
ex' 

0.610 N 
0.73249622 
2.45090689e-05 

-3.1482346Oe-05 
-3.43768670e-10 
3.48971568e-10 

1.55 N 
C=3.9017898 
a=5.60906090e-04 
b=-1.57999750e-04 
c=-1.21168517e-08 
d=l.59964185e-09 

3.06 N 
C=5.0187264 

2.02 N 
4.3971350 
1.71102366e-04 

-1.81160066e-04 
-4.43143658e-09 
1.89421164e-09 

a=-3.19015894e-04 
b=-2.05725477e-04 

0.985 N 
2.9270248 
1.43600130e-04 

-1.16959209e-04 
-3.21904929e-09 
1.16400640e-09 

2.49 N 
4.6335057 
-1.34190007e-04 
-1.97157550e-04 
3.9074364 le-10 
2.16237967e-09 

c=8.61716716e-09 
d=2.13766022e-09 
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TABLE C-4.9 
C-C-C-C Al Plate - 1st Displacement Shapes - Runs 14,24,27,28 

Coefficients for Shapes in Fig 4.63 
X direction 

y = C + ax + bx2 + ex3 4- dx4 

0.111 g 
C= 0.18605322 
a=4.80929236e-05 
b=-3.23016893e-05 
c=-4.33407629e-09 
d=1.41951031e-09 

0.309 g 
0.50658390 
1.68623624e-04 

-8.76216497e-05 
-1.58920847e-08 
3.77657316e-09 

0.694 g 
C=0.90518525 
a=3.O9399684e-04 
b=-l.54638194e-04 
c=-2.94181774e-08 
d=6.43284926e-09 

1.23 g 
C=1.2721722 
a=4.01432500e-04 
b=-2.12125217e-04 
c=-3.64499398e-08 
d=8.49601995e-09 

TABLE C-4.10 
C-C-C-C Al Plate - 1st Displacement Shapes - Runs 15,25,26,29 

Coefficients for Shapes in Fig 4.67 
Y direction 

y = C + ax + bx2 + ex3 + dx4 

0.111 g 
C=0.18510577 
a=-2.15727482e-04 
b=-1.99983855e-05 
c=1.27114891e-08 
d=5.41844359e-10 

0.309 g 
0.50291058 
-1.97255793e-04 
-5.59537957e-05 
1.2059335 le-08 
1.55156880e-09 

0.694 g 
C= 0.90023051 
a=-3.34182756e-04 
b=-1.02666874e-04 
c=2.01552115e-08 
d=2.91477962e-09 

1.23 g 
1.2702762 

-4.61449662e-04 
-1.45305131e-04 
2.80557163e-08 
4.158369286-09 
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TABLE C-4.11 
C-C-C-C CFRP Plate - 1st Displacement Shapes -Runs 48,51,52,55 

Coefficients for Shapes in Fig 4.72 
Y direction 

y = C + ax + bx2 + ex3 + dx4 

0.4 g 
C=0.19691269 
a=7.76582726e-05 
b=-3.43349272e-05 
c=-8.01449268e-09 
d=1.54452587e-09 

2.18 g 
C=0.97544980 
a=l.95788219e-04 
b=-1.67623230e-04 
c=-1.41147326e-08 
d=7.28259903e-09 

1.35 g 
0.63213456 
1.05624380e-03 

-l.O6701671e-O4 
-1.12736443e-07 
4.51276709e-09 

6.95 g 
1.4379342 
-4.71198599e-04 
-2.33147117e-04 
4.92541191e-08 
9.3O904267e-09 

TABLE C-4.12 
C-C -C-C CFRP Plate - 1st Displacement Shapes - Runs 49,50,53,54 

Coefficients for Shapes in Fig 4.76 
X direction 

y = C + ax + bx2 + ex3 + dx4 

0.4 g 
C=0.19779860 
a=5.63285628e-04 

b=-2.127595 lle-05 
c=-4.35215743e-08 
d=5.67938711e-10 

1.35 g 
0.62402380 
1.28890152e-03 
-6.96398884e-05 
-1.00695353e-O7 
1.92995795e-09 

2.18 g 
C=0.97860655 
a=1.36853617e-03 
b=-9.86510536e-05 
c=-1.08817380e-07 
d=2.31749075e-09 

6.95 g 
1.4340610 
6.74334078e-O4 

-1.26206381e-O4 
-5.50096757e-08 
2.23560150e-O9 
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TABLE 3.1 

MEASURED LINEAR MODAL FREQUENCIES 

MODE NUMBER AL Shaker Plate 
254X203X1.30 mm 

Frequency Hz 

CFRP Shaker Plate 
254X203X1.09 mm 

Frequency Hz 

CFRP APWT Plate 
514X387X1.09 mm 

Frequency Hz 

1: 1 208 156 59 
2: 1 365 246 77 
1 :2 485 449 
3:1 618 352 107 
2:2 623 535 160 
3:2 864 674 187 
4: 1 966 587 139 
5:1 825 194 
2:3 981 
3:3 1110 
4:2 220 
5:2 266 
1:3 281 
4:3 355 
5:3 405 
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TABLE 5.9 
CURVE FITTING FUNCTIONS OF PPDFs 

C-C-C-C AL Shaker Plate R 20 SG 2 
Partial Listing 

Rank Goodness of Fi tFjansMsja 
1 0.9784536528 y=a+bx+cx2+dx3+«x4+fx5+gx6+hx7+ix8+jx9+kx 10 
2 0.9740554290 y=a+bx+cx2+dx3+ex4+fx5+gx6+hx7+ix8+jx9 
3 0.9724300537 y=a+bx+cx2+dx3+ex4+fx5+gx6+hx7+ix8 
4 0.9712823947 y0.5=a+bx+cx2+dx3+ex4+fx5 
5 0.9710257009 y=a+bx+cx2+dx3+ex4+fx5+gx6+hx7 
6 0.9702265224 y0.5=a+bx+cx2+dx3+ex4 
7 0.9698588213 y=a+bx+cx2+dx3+ex4+fx5+gx6 
8 0.9687897349 y=a+bx+c/x-Kk2+e/x2+fx3+g/x3+hx4+i/x4+jx5 
9 0.9685721197 y=a+bx+c/x+dx2+e/x2+fx3+g/x3+hx4+i/x4 
10 0.9674214501 y=a+bx+c/x+dx2+e/x2+fx3+g/x3+hx4 
11 0.9665260865 y=(a+cx+ex2+gx3)/(l +bx+dx2+fx3+hx4) 
12 0.9646339143 y=a+bx+cx2+dex+e/x2 
13 0.963396113 y=a+bx+cx2+dx3+ee-x 
14 0.9625290723 Iny=a+bx+cx2+dx3+ex4+fx5 
15 0.9624406469 y=a+bx+cx2+dx3+ex4+fx5 
16 0.9623580240 y=a+bx+c/x+dx2+e/x2+fx3+g/x3 
17 0.9614381348 y=a+bx+cx2+dx3+ex4 
18 0.9614317821 y=a+bexp(-exp(-((x-c)/d))-((x-c)/d)+l)[ExtrVal] 
19 0.9606989190 y=a+bx+cx2+dex+ee-x 
20 0.9605540109 Iny=a+bx+cx2+dx3+ex4 
21 0.9604978619 y=a+bx2+cx3+de-x 
22 0.9601906898 y=a+bx+cx2+dex+e/x 
23 0.9601668987 y=a+bx+cx2+dx3+eex 
24 0.9600361223 y=a+bx+cx2+dex 
25 0.9598795470 y=a+bx+c/x+dx2+e/x2+fx3 
26 0.9584708035 y=a+bx+cx2+dx3+e/x2 
27 0.9579770346 y=(a+cx+ex2)/( 1 +bx+dx2) 
28 0.9568268513 y=(a+cx+ex2+gx3)/( 1 +bx+dx2+fx3) 
29 0.9559956258 y0.5=a+bx+cx2+dx3 
30 0.9539661278 y=(a+cx+ex2)/( 1 +bx+dx2+fx3) 
31 0.9522638805 y=a+bx+cx2+dx3+e/x 
32 0.9517573108 y=a+bx+cx2+dx3 
33 0.9513985892 y=a+berfc(((x-c)/d)2) [Erfc Peak] 
35 0.9431612386 y=a+bx2+cex+de-x 
36 0.9420260096 y=a+berfc(((x-c)/d)2) [Erfc Peak] 
37 0.9414080466 y=a+bx+cx2+d/x2+ee-x 
38 0.9406905220 y=a+bsin(2px/d+c) [Sine] 
39 0.9406905220 y=a+bsin2(2px/d+c) [Sine2] 
40 0.9367484238 y0.5=a+bx2 
41 0.9364111562 y=a+bexp(-0.5((x-c)/d)2) [Gaussian] 
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TABLE 5.9 continued 
42 0.9360144053 y0.5=a+bx-}-cx2 
43 0.9344709049 y=a+b*4n/(l+n)2 n=exp(-(x-c)/d) [Logistic] 
44 0.9327891259 y=a+b/(l+((x-c)/d)2) [Lorentzian] 
45 0.9319625228 y=a+bx+cx2+d/x+ee-x 
46 0.9315120977 y=a+bx+cx2+de-x 
47 0.9288928519 y=a+bexp(-0.5((x-c)/d)2) [Gaussian] 
48 0.9283099154 y=a-s-bx-s-cx3+d/x2+ee-x 
49 0.9268986789 y=a+bx2-s-cx3-Klex 
50 0.9265858409 y=a+bx-{-cex-Hl/x2+ee-x 
51 0.9237733407 y=a-s-bx-s-Gx3+dex+ee-x 
52 0.9223936385 y=a+bx2+cx3-fd/x2 
53 0.9205763517 lny=a+bex+ce-x 
54 0.9192284995 y=a+b*4n/(l-s-n)2 n=exp(-(x-c)/d) [Logistic] 
55 0.9168242754 y=a+bx+cx 3 +d/x+ee-x 
56 0.9165493471 y=a+bx+€/x+d/x2+ee-x 
57 0.9157861895 y=a+bx+cx3-i-de-x 
58 0.9156574259 y=a+bx+c/x2+de-x 
59 0.9154668519 y=a+bx2+cex+d/x2 
60 0.9150819733 y=a+bx+cex+d/x^e-x 
61 0.9143784224 y=a+bx2+cx3+d/x 
62 0.9142570645 y=a-!-bx2-{-cx3 
63 0.9138648498 y=a+bx+cex+de-x 
64 0.9076699071 y=a+bx+cx2+d/x+e/x2 
65 0.9074828624 y=a+bx2+cex+d/x 
66 0.9072889209 y=a+bx2+c/x2+de-x 
67 0.9072768228 y=a+bx2-s-cex 
68 0.9071752212 y=a+bx+cx3+dex+e/x2 
69 0.9048421291 y=a+bx+c/x+de-x 
70 0.9024859375 y=a+bx-H;e-x 
71 0.9018485999 y=a+bx2+c/x+d/x2 
72 0.9018180612 y=a+bx3+cex+d/x2 
73 0.9002804198 y=a-s-bx+cx2+d/x2 
74 0.8996330629 Iny=a+bx+cx2+dx3 
75 0.8979166817 y=a+bx2+c/x+de-x 
76 0.8978266571 y=a+bx2+ce-x 
77 0.8962599582 y=a+bx3+cex-i-de-x 
78 0.8962510333 y=a+bx2+c/x2 
79 0.8945097660 y=a+bx-s-cx3+dex+e/x 
80 0.8935354853 y=a+b/(l+((x-c)/d)2) [Lorentzian] 
81 0.8924828848 y=a-fbx+cx3+dex 
82 0.8905209131 y=a+bx-fcx2+d/x 
83 0.8904762856 y=a+bx+cx2 
84 0.8900634931 y=a-fbx3-s-cex+d/x 
85 0.8893081185 lny=a+bx+ce-x 
86 0.8889871584 lny=a+bx-s-cx2 
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Fig 3.5   Mode shapes using video holography, a=208 Hz, b=365 Hz, c=485 Hz, 

d=618 Hz, e=623 Hz, f=864 Hz and g=966 Hz , C-C-C-C aluminium alloy shaker pis 
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